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ABSTRACT

This paper describes a novel method that models the corre-
lation between acoustic observations in contiguous speech
segments. The basic idea behind the method is that acous-
tic observations are conditioned not only on the phonetic
context but also on the preceding acoustic segment ob-
servation. The correlation between consecutive acoustic
observations is modeled by polynomial mean trajectory
segment models. This method is an extension of conven-
tional segment modeling approaches in that it not only de-
scribes the correlation of acoustic observations inside seg-
ments but also between contiguous segments. It is also a
generalization of phonetic context (e.g.,triphone) modeling
approaches because it can model acoustic context and pho-
netic context at the same time. In a speaker-independent
phoneme classification test, using the proposed method re-
sulted in a 7-9% reduction in error rate as compared to the
traditional triphone segmental model system and a 31% re-
duction as compared to a similar triphone HMM (hidden
Markov model) system.

1. INTRODUCTION

1.1. Intrasegment Correlation

Most current speech recognition systems are based on frame-
based measurements. HMM systems make the further as-
sumption that these frames are statistically independent,
given the state. The reason for making this assumption,
however, has to do with computational efficiency in imple-
menting practical systems, not with theoretical or exper-
imental evidence. Actually, we know experimentally that
the frames of a speech segment corresponding to one pho-
netic event are highly correlated. Consequently, the price
of computational efficiency is degraded recognition accu-
racy.

1.2. Segmental Models

To alleviate this problem, several systems have been pro-
posed recently that use segment-based measurements (usu-
ally calculated from frame-based ones) to jointly model the
observations corresponding to one phonetic segment. Such
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models are usually called segment models, of which a com-
prehensive overview is presented in [5].

1.3. Intersegment Correlation

Segment models address the problem of intrasegment cor-
relation. Perceptual experiments, however, indicate that
significant correlation exists not only inside phonemes but
also between neighboring ones [2].

The most important clue for the identity of certain con-
sonants is the spectral change (formant transition) in the
preceding and following vowels.

Context dependency is often modeled by using separate
models for the same phoneme as a function of the adjoining
phonemes (triphone models) [4]. In this paper, we call this
method phonetic contexrt modeling.

An analysis of the basic maximum a-posteriori formulas of
automatic speech recognition suggests that it is possible
to model not only phonetic context, but also observation
context. That is, to determine the probability of a segment
observation, we can use both the identity of the adjacent
phonemes and the acoustic observations corresponding to
them.

In the next section we derive the basic equations for model-
ing observation context. The formalism will be introduced
using class-conditional probabilities. After deriving the ba-
sic formulas, we shall describe one way of implementing
them using polynomial mean-trajectory segment models.
In Section 4 we review the results of a phoneme classifica-
tion experiment with observation context modeling and we
summarize our paper in Section 5.

2. MATHEMATICAL FORMULATION

The most common approach to continuous speech recog-
nition is to find the word (phoneme) sequence, W, which
maximizes the joint probability (likelihood) of the acoustic

observation, A, and the word sequence, W.
wW* = arg mwz}xp(A, w) 1)

arg max p(A|W)p(W). 2)

In the usual triphone-based approach P(A|W) is factorized
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Figure 1. Summary of the notation used in the paper
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where A; is the i-th acoustic segment observation and the
conditioning term is the triphone centered around phoneme
ws in W.

Because our method does not assume the independence of
the contiguous segment observations A; and A;_1, P(A;)
is conditioned not only on the triphone but also on the
preceding segment observation:

P(AW) = [ ] P(AilAimr, wit)). (4)

3. IMPLEMENTATION

Class-conditional probabilities are usually estimated by den-
sity estimation methods, which can not be directly condi-
tioned on continuous parameters. Therefore, we have to
use the basic definition of conditional probabilities in or-
der to model the dependence on A;_; in Eq. (4):

P(Ai—1, Aslwit])

PAl Ai_ ,’LU%'-’__1 = - 5
(il ui) = o (%)

a distribution in the numerator that assumes the indepen-
dence of A; and A;_1, because our purpose is to model the
correlation between them.

Our implementation uses polynomial segment (mixture)
models to estimate this equation. Separate models are
used to estimate the numerator and denominator. We
have a set of segment observations {A;}, in which each
element A; is the realization of the same triphone. To
estimate the numerator of Eq. (5), we make the new set
{47} = {(Ai—1, A;)}, in which each element, A}, is the
concatenation of A; from the original set and the acoustic
segment observation, A;_i, preceding it in the original ut-
terance. Using this set of modified segment observations
and the estimation algorithm described in [1, 3], we can
obtain a model that implements the numerator of Eq. (5).
Because a segment model obtained in this way does not
assume the independence of A; and A;_1, it can model the
correlation between them.

The denominator is estimated in a similar way, here the
modified set, {A}} = {A;_1}, consists of the segment ob-
servations preceding each A; in the original set.



P(A;]A;—1,wiT]) is then obtained by taking the quotient
of the likelihoods produced by the two models.

The computational complexity of the method is about three
times that of the basic segment modeling approach without
acoustic context modeling. Calculating the numerator re-
quires about two times the computation because the length
of (Ai—1, A;) is twice that of the length of A;, on average.
Calculating the denominator requires the same amount of
computation as the original method because the length of
A;_1 is the same, on average, as the length of A;. This
value can, however, be decreased by using only the last
few frames of A;_1, both in the numerator and in the de-
nominator. Using only the frames close to the segment
boundary is warranted by the assumption that the corre-
lation is the most significant between the frames close to
the transition region.

4. EXPERIMENTAL EVALUATION

In order to evaluate the practicality of the proposed
method, speaker-independent phoneme classification ex-
periments were performed using the “ATR 520 Important
Japanese Words” database. Fifteen male and fifteen fe-
male speakers were used for training and another five of
each gender were used for testing.

The speech was originally sampled at 12 kHz. Every 10
milliseconds a vector of 13 Mel-warped cepstral coefficients
was computed using a 25-millisecond window of the speech.

In some of the experiments, in addition to these “static”
coefficients, the so-called delta and acceleration coefficients
were also used. These coefficients were calculated using the
regression method with +2 frames of data.

After a word was parameterized, the mean vector was de-
termined and subtracted from the parameter vector of each
frame (cepstral mean removal) in order to increase the ro-
bustness against speaker and channel variations.

The triphone models used in some of the experiments were
of the generalized triphone type described in [4].

The results of the experiments are summarized in Tables 1—-
4.

The models had three mixtures when not indicated oth-
erwise. The HMM models had three states with a diago-
nal covariance matrix. The polynomial segment models
(PSMs) had second order of mean trajectory polynoms
when not indicated otherwise, while the variance trajec-
tory polynom order is displayed in the tables explicitly.
We note that in Table 1 the PSM models had a smaller
number of free parameters than the HMMs, because of the
constant variance trajectory. The following duration mod-
els were evaluated: no explicit duration model (NO), nor-
mal duration distribution (DN), and the gamma duration
distribution (DG). The HMMSs always used the inherent
exponential duration model.

The segment models with observation context modeling
took into account only the last 20 ms of the preceding

segment. This value was chosen so that the entire transi-
tion region could be included and the distant acoustic data
avoided.

Two ways of using acoustic context were evaluated. The
first way implemented only the numerator of Eq. (5). That
is it calculated

P(Ai_1, Ailwity). (6)

The second way implemented the entire Eq. (5). The two
methods are indicated in the tables by their equation num-
bers.

Table 1 compares the performances of the HMM and the
different PSM models. The following conclusions can be
drawn from the results. The use of the segment model de-
creages the error rate, as compared to that of the HMM,
even in the case of a smaller number of free parameters
(the PSMs used a static variance polynom). Using Eq. (6)
to model acoustic context decreases the error rate signif-
icantly in the case of triphone (CD) models but hardly
at all in the case of monophone (CI) models (5.71% vs.
0.52%). However, although Eq. (5) is suitable for contin-
uous word recognition, using it to model acoustic context
always increases the error rate in both cases. Using an ex-
plicit duration model decreases the error rate of the PSMs
further, and a normal distribution seems to be better for
this purpose than the gamma distribution.

Table 2 displays a more detailed comparison of the triphone
HMM and different triphone PSMs. All of the PSMs eval-
uated in this table produced a smaller error rate than the
HMM. It is apparent that increasing the variance polynom
order decreased the error rate. It is also confirmed that
the normal duration distribution gives the largest improve-
ment, although the gamma distribution is also better than
no explicit model. Finally, when Eq. (6) was used to model
acoustic context the error rates in all cases decreased, and
the opposite was true when Eq. (5) was used.

The effect of the length of the acoustic observation contect
is shown in Table 3. Here triphone PSMs are compared
which use an acoustic context between 0 and 50 millisec-
onds. The optimum size of the acoustic context is about 30
milliseconds. This confirmes that only acoustic data close
to the transition region is useful.

Finally, Table 4 compares the error rates of a set of models
with the same number of free parameters for easier com-
parision. We can see that the use of the segment model
resulted in a 25-26% lower error rate as compared to the
HMM. Using of acoustic context decreased the error rate
by another 7-9%.

5. SUMMARY

This paper proposed a method for modeling the correla-
tion of acoustic parameters between adjacent segments.
The results of the experiments indicate that for the given
phoneme classification task, using an observation context
consistently decreases the error rate. The error rate of the
triphone polynomial segmental model system was 9-13%



Table 1. Speaker-independent phoneme classification er-
ror rates (%). Monophone (CI) and triphone (CD) mod-
els, as indicated. 13 dimensional feature vectors (mel-
cepstrum). Constant variance trajectory polynoms (1 free
parameter).

Model | Dur. Obs. Parameters
type model | ctxt. ClI | CD
[HMM | NO [NO [ 31.98 | 15.47 |

NO 28.76 | 12.78

NO Eq. (6) || 2861 | 12.05

PSM Eq. (5) || 20.88 | 13.22
DG NO 28.14 | 11.81

DN NO 2742 | 11.69

lower when an observation context was used than when
one was not. This improvement is significant and verifies
the practicality of the new method for phoneme classifica-
tion.
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Table 2. Speaker independent phoneme classification er-
ror rates (%). All the models were triphone models. 39
dimensional feature vectors (cepstrum, A and AA cep-
strum). The variance polynom order was between 0 and 2,
as indicated.

Model | Var. Obs. Duration Model

type poly. ctxt. NO|[ DN ]| DG
| HMM, 3states | NO 1357 —] —]
cons- NO 10.93 | 1048 | 10.52
PSM tant Eq. (6) || 10.19 | 9.50 | 9.54
Eq (5) || 11.61 | 10.93 | 11.05
li- NO 10.89 | 10.27 | 10.40
PSM ne- Eq. (6) || 10.05 | 9.31 9.40
ar Eq. (5) || 11.61 | 10.94 | 11.04
quad- | NO 10.93 | 10.18 | 10.28
PSM ra- Eq. (6) || 10.00 | 9.31 9.89
tic Eq. (5) || 11.58 | 10.76 | 10.84
Table 3. Effect of the length of acoustic context on

speaker-independent phoneme classification error rates
(%). Cepstrum, A and AA cepstrum. Quadratic vari-
ance polynom. Acoustic context was taken into account
using Eq. (6).

Model | Observation || Duration Model
type | context size NO | DN
0 ms 10.93 10.18

CD 10 ms 10.26 9.63
20 ms 10.00 9.31

30 ms 9.84 9.16

PSM 40 ms 10.09 9.60
50 ms 10.70 10.09

Table 4. Speaker-independent phoneme classification er-
ror rates (%). All the models were triphone models. 39
dimensional feature vectors (cepstrum, A and AA cep-
strum). The variance polynom was quadratic. The PSMs
used a normal duration distribution.

Model Obs. Parameters
type ctxt. static | static+A+AA
HMM NO 15.47 13.57
PSM NO 11.48 10.18
PSM Eq. (6) 10.67 9.31




