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ABSTRACT

In a limited domain task (e.g. airline reservation, database
retrieval, etc) many robust understanding systems, designed
for both speech and text input, have been implemented
[11[31[51[6][10] based on the Stochastic Conceptual Finite-
State paradigm (Semantic Network) or CHRONUS paradigm
[11] (Conceptual Hidden Representation of Natural
Unconstrained Speech), which establishes relations between
conceptual entities through a probabilistic graph-like structure.
The use of this kind of grammar to model semantic
information presents limitations, which have been analysed
during the implementation of a flexible architecture for a
robust information retrieval system, based on the same
paradigm [1]. We have tried to solve some of them by
integrating a set of conceptual probabilistic and non-
probabilistic grammars, which allow certain complexity in the
functionality of the application, such as applying non-SQL
functions to the results of SQL queries in order to retrieve
information not explicitly included in the database, translating
certain natural spoken sentences (that would produce difficult
embedded queries and therefore more natural queries) without
so many restrictions in the relative position of inter-concept
relationship.

1. INTRODUCTION
Many robust understanding systems, designed for both speech
and text input, have been implemented [1][3][5][6][10][11]
based on the Stochastic Conceptual Finite-State paradigm,
which establishes relations between conceptual entities
through a probabilistic graph structure. These concept
relations, or linguistic cases, can be used to label the phrases
of a sentence and obtain an intermediate representation useful
for its interpretation. In a limited domain task (e.g. airline
reservation, database retrieval, etc) the number of different
concepts can be assumed to be finite and directly deducible
from the knowledge of the task itself. The output of this
module is called conceptual segmentation and it is the input
for a second module, the Template Generator, which
translates the initial segmentation into a template conforming
to a more abstract formalism. Finally, an SQL Translator
generates SQL query for extracting the requested information
from a database. When processing spoken queries, some
systems [7] [10] [11] classify them before being translated,
using Supervised Stochastic Classifiers based on neural
networks, dynamic programming, etc. These classifiers need a
great amount of labelled data and a set of complicated rules to
fill the slots of the semantic frames recognised by the

classification. This approach is less flexible when adding
further functionality is needed. Other approaches use
integrated syntactic and semantic grammars to obtain
structural information before applying the translation rules [3]

[4].

In this paper, we present some conclusions about limitations
of these systems, obtained during the implementation of a
flexible architecture for a robust information retrieval system
based on the same paradigm [1], and our solutions for some of
them. Besides, we present an alternative classifier based on
both Structure Analyser (SA) and Structure Transformer (ST)
modules. Compared to stochastic classifiers [7][10][11], this
architecture is more flexible when adding new functionality
without the need of collecting and labelling a large amount of
additional data. Nevertheless, the PFSN (probabilistic finite
state network) must be re-trained and new CM (conceptual
mapping), SA (structure analysis) and ST (structure
transformation) rules could have to be written.

2. LIMITATIONS OF CONCEPTUAL
FINITE-STATE LANGUAGE MODELS

Although the Probabilistic Conceptual Finite-State paradigm
has proved to be a good solution to implement robust and
trainable speech understanding systems, it shows some
limitations derived from itself. To develop a robust speech
understanding module using a small labeled-data corpus we
need to relax the linguistic restrictions, smoothing the
semantic (conceptual) grammar used to decode the speech
input into a concept sequence from the application semantic
domain. Some systems [1][5][10] use an ergodic conceptual
automata (no restrictions between concepts) to allow many
concept sequences not trained. A relaxed semantic grammar
(ergodic) with not modeled long-term inter-concept
relationships (Finite-State Network) and the use of a
“garbage” semantic category (to model words not included in
the semantically categorized lexicon) produce “Semantic
Ambiguity” problems (e.g. dates, numbers, ambiguous
concepts in the domain, etc) (see Example I).

Besides, in some languages as Spanish, the phrase order
in the sentence has a degree of freedom, allowing a variety of
conceptual sequences to express the same query, in the surface
level of sentence. So, in many cases, attribute-value pairs (in
a relational database sense) do not appear together, and the
value-concept has to be decoded as a genera concept (number,
date, etc) and is not linked to the attribute
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Figure 1. Modules Diagram of the proposed Architecture for the Robust Speech Understanding System

Concept (“Bad-Formed Concepts™) (see Example 2). This is
a problem to understand correctly the sentence because a
attribute-value pair must be linked in a single concept before
translating it.To solve these problems we include a Conceptual
Mapper module which uses context sensitive grammar and a
set of semantic features to find inter-concepts relationships
and to properly decode some general concept as dates,
numbers, and some concepts with the same interior structure.
Some previous works [8] have proposed the use of context-
free grammars to analyze the interior of each concept but an
inter-concept grammar is also needed to model long-term
inter-concept relationships [9].

3. THE PROPOSED SPEECH
UNDERSTANDING ARCHITECTURE

A non-integrated two level approach has been implemented,
including an acoustic decoder and an understanding module.
Our proposed architecture makes use of several kinds of
grammars: a probabilistic finite state network (PFSN) for
concept decoding (CD), a context sensitive grammar (CSG,)
for conceptual mapping (CM), a semantic context-free
grammar (SCFG) for structure analysis (SA) and another
context sensitive grammar (CSG,) for structure transformation
(ST). This combination allows answering a complex query
through the structured execution of multiple simple queries
and functions.

The understanding architecture (Figure 1) is composed of the
following modules that run in a PC:

3.1. Acoustic Decoder

A One-Pass continuous speech recogniser based on semi-
continuous HMM (SCHMM) with a smoothed 160 POS
bigram is used [2] to decode the acoustic input from the user.

3.2. Understanding Module

It takes an input sentence from the acoustical decoder and
produces an answer that, most of the times, is the result of the
application of several available non-SQL functions on simple
queries. In other cases it is the result of answering a simple
query. The following modules compose this understanding
system:

Probabilistic Conceptual Decoder

It is based on a dynamic programming algorithm and an
ergodic regular grammar of concepts, related to the
application domain, where each concept is modelled by a
PFSN of semantic categories [3] [4] [6]. For the first version
we have not trained these probabilities and they are uniform.

Robustness and coverage are increased by means of a special
“garbage” category. Stochastic concept automata mainly
model the structural information of each concept, but an inter-
concept grammar is also trained from labelled data.

Before CD, we use a semantically labelled dictionary to look
up each word. Due to ambiguity, the application of the labeller
on a sentence produces a directed category graph. A dynamic
programming algorithm processes this graph to get the most



probable sequence of concepts and categories,
ambiguity problem.

solving the

Conceptual Mapper

As the CD is unable to model non-contiguous inter-concept
relationships, some specific concepts such as numbers or
dates, are not correctly labelled. Considering the context, each
of these ambiguous concepts can be correctly mapped or
assigned to the right concept using a set of mapping and
merging CSG, rules (for instance, a date can be an attribute of
more than one entity in the Entity-Relationship scheme). As
we can see in the example below, due to the presence of a
Report concept, Date can be mapped onto Date-Report
(Example 1):

Was last casualty report regarding Zeus in November ?

Report Ship Date = Report Date

Some contiguous and non-contiguous concepts can be
merged. In the example below, considering the Length concept
in the sentence, Number concept can be incorporated to
Length (attribute-value pair) (Example 2):

Is the length of the fastest ship 5 meters or more ?

Length Speed  Ship Number = Length

Structure Analyser

Our proposed alternative to stochastic classifiers is based on a
SCFG concept parser. The structure obtained this way allows
determining the simple queries and the functions (distance,
comparison, etc.) that process them. In order to get a reduced
and more general set of grammar rules, a concept taxonomy
(verb, function, entity, attribute) is used. To design these

rules, the application functionality and certain general
linguistic ~phenomena (co-ordination, relative clauses,
negation, etc.) has been taken into account.

Structure Transformer

If the SCFG extracts conceptual structure, the ST rules

complete subqueries, solving some problems such as concept
ellipsis, relative clauses, and so on.

Functional Processor and Control

The role of this module is to process the result of the queries
using, if required by the answering strategy, the non-SQL
functions. Additional functions can be easily incorporated if
necessary.

Template Generator and SQL Translator

The simple queries detected and completed by previous
modules are translated to SQL in two steps: templates are
filled with key information from the sentence and, then, these
templates are translated into SQL queries by means of a set of
rules that include database information.

3.3 Examples

One example of complex query processing could be: “Is
England’s latest casualty report rated worse than America’s?”
It is decomposed into two simple queries (“England’s latest
casualty report” and “America’s latest casualty report”) which
are the arguments of the comparative function “worse than”.
These simple queries are easily translated into SQL after the
ST module solves the concept ellipsis problem in the second
query. In this example, we include the following illustration
that shows the concept structure and the transformation
process. The output of CD and CM is:

<Y/N>:is

<SHIP> : England’s

<F_LASTS> : latest

<REPORTS> : casualty report rated
<F_COMP-> : worse than

<SHIP> : America’s

where concepts appear between brackets. As can be seen in
the illustration below, each concept is assigned to one of the
classes in the taxonomy (ACTION, ENTITY, MONARY_F,
ATTRIB, BINARY _F, etc).

WHOLE_QUERY

mx QUERY

SIMPLE QUERY

ACTION

SIMPLE QUERY BINARY_F

ENTITY MONARY F ATTRIB ATTRIB ‘ ENTITY MONARY F A'I'I'RIB ATTRIB

<YIN> <SHIP> <F_LAST> <REPCIRTS><LEVEL><COMF‘> <SHIP> <F_| LAST> <REPORTS>‘LEVEL>

MONARY FUNCTION
& ELLIPSIS RESOLUTION

Another example: “Is Neptune closer to Titanic than to Zeus?”
It is decomposed into three simple SQL queries, which obtain
the geographic position of each ship. With this information
two distances are calculated and compared by the control
module.

4. TASK DESCRIPTION AND
EVALUATION

An Information Retrieval System has been developed in order
to get navy information, allowing not only simple queries but
also more complex ones, including non SQL functions and
multi-query questions.

The application has a restricted semantic domain. The
vocabulary is about 1100 words. The first version of the
system has been implemented using 600 Spanish sentences for
training (both text and speech) and 400 for testing. 4 speakers
(2 male and 2 female) have uttered the speech. To further
evaluate the system we have collected up to 3000 sentences



(plain text) from new users and several speakers will speak
some of them, after the necessary review.

The results on text corpora, manually comparing the system
output to the reference queries, show that there are 92 %
correctly generated queries for the training text corpus, and
89 % for the testing one.

We have evaluated the spoken corpora (the same 87 test
sentences for 4 speakers, a subset of the 400 sentences) by
manually comparing the system output to the reference
queries. So we have obtained conclusions about the limitations
and advantages of using robust concept decoding (with
garbage semantic categories) in restricted domain
applications. The text input to the decoder has been obtained
using Semicontinuous HMM and a 160 POS bigram trained
from different text corpora without relation to the semantic
domain application. The percentage of correct sentences is
shown in Table I.

Correct Sentences

FER (male) 53%
LEA (male) 69%
ROM (female) 70.5%
ENR (female) 65%

64.37%

Table I: Percentage of Correct Sentences
Understanding

for Speech

5. FUTURE WORK

We are currently collecting 10 new speakers (5 men and 5
female), to evaluate the proposed system and to obtain
conclusions about the limitations and advantages of using
robust concept decoding (with garbage semantic categories) in
restricted domain applications. To increase the performance of
the system we will try to integrate structural information into
conceptual segmentation of the sentence to improve the
Conceptual Mapper. Also, we will increase the lexicon with
new words to improve coberture.

6. CONCLUSIONS

We have presented a flexible bottom-up approach to deal with
complex understanding tasks and to solve some limitations
due to the use of relaxed stochastic conceptual grammars. To
attain this, the architecture integrates robust conceptual
decoding and semantic structure analysis to answer a complex
query through the structured execution of multiple simple
queries and functions. The results that we have obtained so far
are encouraging. We have studied the advantages and
limitations of using the Stochastic Conceptual Finite-State
paradigm, and a partial solution to these limitations has been
found (Conceptual Mapper). A more flexible and alternative
approach (SA and ST modules) to Stechastic Classifiers to
decode the complexity of sentences has been implemented and
evaluated with encouraged performance.
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