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ABSTRACT

We have previously developed a speech enhancement scheme
which can adapt to unknown additive noise. We model speech
and noise using perceptual frequency or ‘warped’ autoregressive
HMMs (AR-HMMs) and estimate the clean speech and noise pa-
rameters within this framework. In this current work, we inves-
tigate the use of our system as a front end to a MFCC recog-
nition system trained on clean speech. To use our system as
a front end, we make two modifications. First, we use mini-
mum mean squared error (MMSE) spectral rather than time do-
main estimators for enhancement. Second, for computational rea-
sons, we form estimators from non-warped AR-HMMs. To avoid
mismatch introduced when converting between warped and non-
warped models, we use parallel sets of models.

Results are presented for small and medium vocabulary tasks. On
the simple task, we are able to approach the performance of a
matched system when language model information is included.
On the second task, we are not able to incorporate a language
model due to modelling deficiencies in AR-HMMs. However, we
still demonstrate substantial improvements over baseline results.

1. INTRODUCTION

Speech processing systems can suffer unacceptable performance
degradation in the presence of background noise. In this paper,
we consider the effect of additive noise on clean speech recogni-
tion systems and use speech enhancement as a front end to im-
prove their performance. In particular, we are interested in the
case where the noise statistics are unknown. Recent approaches
to adaptive speech enhancement are summarised in [2]. Many of
the techniques use Kalman filters.

We base our system on work by Ephraim [1]. This tech-
nique models speech and noise using autoregressive HMMs (AR-
HMMs) and uses these to form a compensated model. This com-
pensated model is used to determine the probability of each com-
pensated state given the noisy observation. These probabilities
are then used to weight estimators of the clean speech given that
state. The extension to multiple mixture systems is straightfor-
ward.

The basic technique uses Wiener filter estimators which have
been shown to be inferior to Kalman filters [5]. However, it
is possible to use other estimators within the same framework.

These may be more applicable when the enhancement system is
used as a front end to a recognition system. The incorporation of
prior information in the form of trained clean speech models is
another advantage of this technique.

We have previously presented two extensions to the work in [1].
In the original system, the noise models were trained on given
examples. In [3], we show that maximum likelihood (ML) esti-
mates can instead be made of the noise statistics. It is possible to
use ML parameter estimation in the AR-HMM domain to adapt to
additive noise because AR-HMMs model features which are ad-
ditive. This is more difficult if for example cepstral-based HMMs
are used.

In later work [4], we show that the modelling power of AR-
HMMs is improved by the incorporation of perceptual frequency.
Here, the bilinear transform is used to produce autocorrelation
coefficients on a warped frequency scale which is a good approxi-
mation to the perceptually meaningful Bark scale. These autocor-
relation coefficients are then used to construct warped AR-HMMs
which are shown to give superior recognition performance to non-
warped models.

To date we have only presented limited evaluations of our sys-
tem. In this current work we present substantial qualitative sup-
port for our technique by investigating its potential as a front end
to recognition systems trained on clean speech. Some modifica-
tions to our previous algorithm are needed and are described in
the following section.

2. THE ENHANCEMENT SYSTEM

Our enhancement system models speech and noise using warped
AR-HMMs. Within this framework, the noise statistics are deter-
mined and estimators formed for enhancement.

Previously, we studied Wiener filter estimators. These give the
MMSE time domain estimate of the clean speech. Several other
estimators are proposed in [1] however.

In this work, we derive enhanced MFCC parameters directly from
the enhanced spectra rather than from an enhanced wave resyn-
thesised in the time domain. We thus found improved perfor-
mance when we used the MMSE power spectral density (PSD)
estimator described in [1] since errors in the spectral domain more
strongly influence the enhanced cepstral features. This estimator



was therefore used for all the experiments described here.

A further modification to our previous system is to decouple the
processes of calculating the posterior probability from the pro-
cess of applying the estimators. As described, we use warped
AR-HMMs for probability calculations since these are better at
modelling speech [4]. However, for computational reasons, it is
desirable to use non-warped AR-HMMs to form the estimators
for enhancement.

We must therefore convert between estimators in the warped and
non-warped domains. It is possible to unwarp the estimators for
enhancement directly. However, there is mismatch introduced by
the unwarping process [8].

Since in this work we use our system as a front end to a stan-
dard recognition system, we wish to minimise this mismatch. We
achieve this by training warped and non-warped models in paral-
lel and using the warped models to calculate probabilities and the
non-warped models to form estimators. The system is shown in
Figure 1.
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Figure 1: A perceptual frequency enhancement system. The
weights for each estimator are determined using warped AR-
HMMs. The estimators are formed using non-warped AR-
HMMs.

The clean speech non-warped models are trained using single
pass retraining. This technique generates a parallel set of mod-
els by computing the state probabilities using one set of models
and training data, and then switching to different training data
to compute parameter estimates for a second model. The noise
statistics are estimated in both the warped and non-warped do-
mains in order to implement the adaptive enhancement system.

3. SMALL VOCABULARY SPEAKER
DEPENDENT EXPERIMENTS

The first set of experiments use the NOISEX-92 database [9]. We
study the male isolated digits task corrupted by the following four
stationary noise sources: Lynx helicopter noise, speech noise, car
noise and F16 aircraft noise.

We study enhancement systems based on two types of clean
speech models: word-based models and general models. We
model the noise using a single state AR-HMM with autoregres-
sive order 20. This model is initialised by assuming the whole
utterance is noise.

3.1. Clean Speech Models

The clean speech MFCC HMM recognition system contains an
8-emitting state left-to-right HMM model for each digit and a
1-emitting state model for silence. The MFCC feature vectors
contain 15 cepstral coefficients including the zeroth coefficient.
Diagonal covariance matrices are used.

The standard Baum-Welsh algorithm is used for training. Con-
nected word Viterbi decoding is used for recognition (i.e. not iso-
lated word recognition). The syntax for the recognition network
is constrained to be a string of digits each followed by silence.

We also construct warped and non-warped AR-HMM clean
speech recognition systems. These are needed for the word-based
enhancement system and for baseline experiments. These have
the same topology as the MFCC models except there are 2 mix-
ture components per state. The order of the autoregressive models
is 20.

All the recognition and enhancement systems use frames of 32ms
with overlap of 16ms. These parameters are chosen to be conve-
nient for construction of enhanced time domain waveforms (used
for perceptual evaluations not discussed here).

3.2. Baseline Performance

The results in this section are the best results achievable for clean
and matched systems. They are obtained by optimising the inser-
tion penalty and another parameter, the silence probability incre-
ment, for each test condition. This latter parameter, described in
[7], weights the log observation probability of the silence model
by a fixed value to improve the chance of low energy frames at
word boundaries being recognised correctly as silence.

Table 1 shows the summary recognition error rates for speech
corrupted by each of the four noise sources and tested with clean
and matched MFCC models. The matched systems are obtained
using single pass retraining. In this and subsequent tables, we
show the average word error rates for the four noise sources at
each SNR. D, S and I are the total number of deletion, insertion
and substitution errors respectively. We see that the performance
of the clean models degrades rapidly with decreasing SNR.

Table 2 summarises the word error rates for the compensated non-
warped and warped AR systems. The compensated models are
formed using trained noise models. They are thus the best com-
pensated models available to calculate the probabilities required
for enhancement. We see that the warped AR-HMM system has
superior performance. Thus the remainder of this paper will focus
on enhancement systems based on warped AR-HMMs.



SNR % Error (D,S,I)
(dB) Clean | Matched
0 0.00 (0,0,0) 0.00 (0,0,0)
18 | 54.50  (57,97,64) 0.00 (0,0,0)
12 | 77.00  (88,160,60) 0.00 (0,0,0)
6 | 92.00 (300,0,0) 0.25 (0,1,0)
0 | 95.00 (380,0,0) 2.50 (0,10,0)
-6 | 95.00 (380,0,0) 32.50 (37,81,12)

Table 1: Word error rates for speech corrupted by the four noises
and recognised using clean and matched MFCC models.

SNR % Error (D,S,I)

(dB) AR Models | Warped AR Models
18 1.00 (0,4,0) 0.00 (0,0,0)
12 3.25 (0,13,0) 0.00 (0,0,0)

6 8.00 (3,29,0) 0.75 (0,3,0)
0 22,5  (13,67,10) 4.75 (2,17,0)
-6 | 38.75 (30,100,25) | 20.75 (14,57,12)

Table 2: Word error rates for corrupted speech recognised using
compensated AR models.

3.3. Word-Based Models

The first set of enhancement experiments investigates systems us-
ing word-based HMMs. For these experiments, Viterbi alignment
is used to obtain the most likely speech and noise state for each
frame given the noisy observation. The most likely mixture com-
ponent given this state is then determined. The speech and noise
statistics for this mixture component are then used to to reestimate
the noise parameters and to construct estimators for enhancement.

We found that the optimal insertion penalty used during Viterbi
alignment varied according to the SNR. In order to automatically
choose this parameter, the NIST tool wavmd was used to approx-
imate the SNR for each test file. This was then mapped to an
insertion penalty.

The first column of Table 3 summarises the enhancement results
obtained using this scheme. We see that substantial improve-
ments have been made over baseline results and that the error
rates are comparable to the matched model results in Table 1.

SNR % Error (D,S,D

(dB) Word Models | General Models
18 0.00 (0,0,0) 2.50 (3,6,1)
12 0.00 (0,0,0) 15.75 (16,44,3)
6 0.50 (0,2,0) 51.50  (93,103,10)
0 625 (1,14,10) | 7875 (274,41,0)
-6 26.50 (30,53,23) | 85.75 (332,110

Table 3: Word error rates for corrupted speech enhanced adap-
tively. The general models contain 128 mixture components in
the speech state.

3.4. General Models

We now investigate the effect of removing the language model
information from the enhancement system. We model the clean
speech and silence using a two-state ergodic HMM. The first
state models speech using 128 mixture components and the sec-
ond state models silence using a single mixture component. For
this system, the forward-backward equations are used instead of
Viterbi alignment to calculate the likelihood of each mixture com-
ponent of the compensated model.

The second column of Table 3 summarises the results for this sys-
tem. These results are inferior to the word-based system despite
having a comparable number of mixture components. Thus we
conclude that some performance is sacrificed by the use of sim-
pler models.

4. MEDIUM VOCABULARY SPEAKER
INDEPENDENT EXPERIMENTS

In this section, we investigate the performance of our algorithm
on the more challenging Resource Management (RM) task [6].
Since the RM database contains clean speech only, Lynx noise
from the NOISEX-92 database was added to the test sets at 18dB
and 12dB.

In [4], we found that on the speaker dependent RM task, the per-
formance of a clean speech AR-HMM system was worse than a
standard MFCC system. This was because currently AR-HMM
systems cannot incorporate delta features and because the MFCC
system uses a superior distortion measure.

The speaker independent task is significantly harder. Typically,
it is necessary to incorporate acceleration features in addition to
delta features. We were therefore unable to construct a clean AR-
HMM medium vocabulary speaker independent recognition sys-
tem with acceptable performance. This implied that we could not
incorporate language model information into our enhancement
system.

Therefore a scheme based on general speech models is studied.
A similar non-adaptive enhancement system based on compen-
sated MFCC models without delta parameters has been shown to
perform well on this task [7].

4.1. Clean Recognition Systems

The enhanced MFCC parameters are evaluated using a clean
speech recognition system as before. This is trained using the
RM Toolkit [10] as a template. The system models 3-state left-
to-right clustered triphones with 5 mixture components per state.
The feature vectors contain 13 cepstral coefficients including the
zeroth coefficient augmented with delta and acceleration coeffi-
cients. These are modelled using diagonal covariance matrices.
The data is pre-emphasised by the filter H(z) =1 —0.97z7L.

The frame rate and frame size are 16ms and 32ms respectively as
used as in the previous experiments. These differ from the stan-
dard parameters used in the RM Toolkit. The non-standard frame
rate affects the modelling of short phones by increasing the min-
imum duration. This problem is alleviated by the introduction of



Model | SNR % Error
(dB) | Feb89 | Oct89 | Feb91 | Sep92 | Avg.
Clean 00 6.3 7.3 59 11.0 7.6
18 38.9 304 35.8 43.1 37.0
12 80.4 81.0 77.7 852 | 81.1
Matched | 18 16.7 14.8 14.1 21.0 16.7
12 40.8 313 34.0 404 | 36.6

Table 4: Baseline results for the RM database speaker indepen-
dent test sets for clean speech and speech corrupted using Lynx
noise. Performance using clean and matched models is shown.

SNR Nr. % Error
(dB) | Mixes | Feb89 | Oct89 | Feb9l | Sep92 | Avg.
18 [ 128 [ 236 | 201 [ 21.7 | 276 [ 232
256 | 187 [ 165 | 189 | 239 | 195
512 | 181 [ 155 | 181 [ 242 | 19.0
| 12 [ 512 | 428 | 357 [ 379 | 467 | 408 |

Table 5: Enhancement results for the RM speaker independent
test sets for Lynx noise. The speech is enhanced using general
speech models with varying numbers of mixture components.

a skip state into each triphone model. The frame rate also affects
the period of time used to calculate the delta and acceleration co-
efficients. This effect was not considered.

4.2. Baseline Performance

Table 4 shows the word error rates for the clean and noisy speech
on the four test sets. The clean baseline is worse than the pub-
lished performance on this database because of the decreased
frame rate as discussed. We see that the addition of noise has
a substantial effect on the error rate. Also in this table are the
word error rates for a matched system.

4.3. Enhancement Performance

We first investigate the 18dB noise condition. Table 5 shows the
word error rates for various numbers of mixture components in
the models. We see that a substantial improvement has been made
on the baseline performance. The performance improves as the
number of mixture components increases although the difference
between the 512-mixture and 256-mixture systems is not signifi-
cant. The last row of this table shows the error rate for the 512-
mixture system at 12dB. Again substantial improvements have
been made over the baseline performance.

From these two test conditions, it appears that the improvement
gained by the enhancement technique halves the error rate. How-
ever this performance is significantly worse than the matched
model results suggesting that there is a modelling deficiency.

5. CONCLUSIONS

We have shown that the enhancement system developed in in [3]
and [4] can be used as a front end to a recogniser trained on clean

speech to improve recognition performance in the presence of un-
known noise.

We modified our existing system in two ways to use it as a front
end. First, we form MMSE spectral estimates rather than MMSE
waveform estimates of the enhanced wave. Second, although
we use perceptual frequency or warped AR-HMMs to model the
speech, we use a parallel set of non-warped models to form es-
timators. This minimises the mismatch between the enhanced
cepstral parameters and the clean speech model.

Our results are encouraging. On the small vocabulary, speaker
dependent task, we were able to approach the performance of a
matched model when a language model was used. We were how-
ever unable to use a language model on the medium vocabulary,
speaker independent task because currently AR-HMMs do not in-
corporate delta parameters. Despite this, we were still able to sub-
stantially reduce the error rate compared to unprocessed speech.
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