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ABSTRACT

In most HMM-based recognition systems, a mixture of diago-
nal covariance gaussians is used to model the observation density
functions in the states. The use of diagonal covariance gaussians
however assumes that the underlying data vectors have uncorre-
lated vector components: if each gaussian is replaced with its full
covariant counterpart, the off-diagonal elements in the covariance
matrices should be small. To that end, most recognition systems
have some kind of decorrelation matrix near the end of the prepro-
cessing. Examples are the inverse cosine transform used with cep-
stral coefficients, and principal component analysis (PCA) or lin-
ear discriminant analysis (LLDA) of the features. However, none of
these transforms is optimal if it comes to reducing the mismatch
introduced by setting the off-diagonal elements in the covariance
matrices to zero.

The algorithm described in this paper reduces the local corre-
lations between feature vector components inside the gaussians
with a single global linear transform at the end of the preprocess-
ing stage. The algorithm is optimal in the sense that we calculate
the linear transformation that minimises the sum of the square of
all off-diagonal elements over all gaussians.

The algorithm is compared with principal component analysis,
linear discriminant analysis and the recently published maxi-
mum likelihood modelling for semi-tied covariance matrices. The
decorrelation method is also evaluated on two speech recognition
tasks. A significant relative improvement was achieved in both
cases.

1. INTRODUCTION

In many speech recognition systems, the observation density
functions are modelled as mixtures of diagonal covariance gaus-
sians. These mixtures of gaussians are however only approxi-
mations of the real distributions. One of the approximations is
the assumption that the off-diagonal elements of the covariance
matrices of the gaussians are close to zero. To that end, most
recognition systems have some kind of parameter decorrelation
near the end of the preprocessing. Examples are the inverse co-
sine transform used with cepstral transformations, and principal
component analysis (PCA) or linear discriminant analysis (LDA)
of the features. None of these transforms are however designed in
an optimal way as to minimise the magnitude of the off-diagonal
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elements in the covariance matrices. The algorithm we propose
is optimal in the sense that we calculate the linear transforma-
tion that minimises the magnitude of the off-diagonal elements
in the covariance matrices over all gaussians with a least-squares
method.

The remainder of the text is organised as follows. First the decor-
relation algorithm is explained in detail. Next, the algorithm is
compared with some existing alternatives. Finally, the method is
evaluated on two speech recognition tasks, and some remarks are
given.

2. ALGORITHM

As mentioned above, we search for a single linear transformation
of the acoustic features that minimises the average of the square of
the off-diagonal elements over a large set of covariance matrices.
To compensate for a possible scaling of the axes, the off-diagonal
elements are normalised with respect to the diagonal elements.
Thus, what is actually minimised is a weighted sum of the square
of the correlation coefficients between the parameters, and this
simultaneously over all gaussians.

Let (™ be the mean and £¢™ the full covariance matrix of gaus-
sian m with Eijm) the component on row ¢ and column j. And
let N be the number of points assigned to gaussian m with
N=>3N (™) the total number of points in the training data
and \(™) = NU™ /N the weight of the gaussian. We then have
to find a transformation matrix A that minimises the following
quantity:
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This quantity can be optimised with numerical techniques, e.g. by
decomposing the transformation matrix A into a product of basic
transformations of the form (I + §;;) with I the identity matrix
and d;; a matrix equal to zero except for element (4, 7).

The optimisation problem is strongly simplified if the normali-
sation with respect to the variance is omitted. As to limit the



mismatch between the quantity that has to be minimised (func-
tion 1) and the approximation without the normalisation, some
pre-compensation is done: the data space is first transformed so
that the average covariance matrix Yav = Z A7) equals
the identity matrix (multiplying with the transpose of the eigen-
vectors, followed by a proper scaling). This makes that the nor-
malisation terms in formula 1 are close to one and thus can be
omitted. To prevent scaling of axes, the rest of the transforma-
tion (on top of the pre-compensation) is limited to the class of
orthonormal transformations (rotations). For the optimisation, we
therefore decompose the remainder of the transformation in ele-
mentary rotations R;; (Givens rotations).
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Expanding formula 1 for an elementary Givens rotation R;;
(omitting the normalisation) shows that the optimal 8 can be
found by minimising the following quantity:
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The simplified optimisation algorithm thus consists of the follow-
ing steps:

1 Do the pre-compensation, and update the covariance
matrices 3™,

2 For every j, and for every ¢ < j, determine the op-
timal rotation € and update the covariance matrices
(™) and the transformation matrix A.

3 Repeat step 2 until convergence (e.g. less than 0.05%
relative improvement on the quantity that is to be
minimised).

The advantage of the simplified version is its fast convergence (5
iterations typically) at a low cost per iteration. And although the
simplified version does not provide the optimal transformation,
the resulting decorrelation matrix is close to the optimum and can
eventually be used as starting point for a full optimisation.

The transformed set of diagonal covariance gaussians to be used
in the HMM system can be easily derived from the set of full
covariance matrices £(™) and means (™.

It is also possible to split the set of gaussians in the HMM system
in two or more logical subsets, and have a decorrelation matrix
for every subset. The decorrelation matrices then can be seen as
a shared full covariance matrix for the subset of gaussians, while

the diagonal covariance gaussians in the subset still allow for an
additional scaling of the axes. This is similar to the semi-tied co-
variance matrices presented in [4]. When multiple decorrelation
matrices are used, a normalisation of the matrices is needed to
prevent an arbitrary scaling of the likelihood of the gaussians over
the different subsets. More information on semi-tied covariance
matrices and on the scaling can be found in [4, 5].

3. COMPARISON WITH OTHER
METHODS

3.1. Principal component analysis

Principal component analysis [1] results in a global decorrelation
of the features. This means that the global covariance matrix of
the features is a diagonal matrix, or after proper scaling the iden-
tity matrix. A global decorrelation however does not provide for
local decorrelation of the data inside the gaussians in the system.
This is clearly shown in figure 1. And although there is no perfect
solution for the situation presented in figure 1, a simple redefini-
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Figure 1: A global decorrelation of the parameter space is not
sufficient to decorrelate the data on the gaussian level. Each el-
lipse is the contour-line of a full covariance gaussian. The dashed
line represents the global correlation of all data.

tion of the axes can reduce the number of gaussians that cannot
be modelled correctly with a diagonal covariance from 4 to 1, and
that is by close approximation what the proposed decorrelation
algorithm will do.

3.2. Linear discriminant analysis

Linear discriminant analysis [3] is widely used to reduce a large
set of features to a smaller set, with minimal loss in performance.
One of the side effects of LDA is a ’whitening‘ (decorrelation)
of the average within class covariance matrix. If the classes are
defined to be the gaussians, then the ’whitening’ operation will
ensure that the average covariance matrix Yav as defined in sec-
tion 2, has a diagonal form. However, only the average covariance
matrix is optimised. No optimisation over all gaussians is done,
which may result in a poor decorrelation after all on the gaussian
level. This is shown in the left upper corner of figure 2.

3.3. Maximum likelihood optimisation

The recently developed maximum likelihood modelling for semi-
tied covariance matrices [4, 5, 6] searches for the linear transfor-



mation A that maximises the likelihood of the training data (eval-
vated in the original, non transformed domain) when the data is
modelled with diagonal covariance matrices in a transformed do-
main. Therefore, following expression has to be maximised:
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It is easy to show that any transformation of the form (I + d;;)
as defined in section 2, which decreases the amplitude of an el-
ement Eijm), also increases the value of |diag(2(”))| (note that
|I 4+ di5] = 1). The net effect of maximising function 2 is thus
also one of minimising a weighted average of the amplitude of the
off-diagonal elements in the covariance matrices. Main difference
with the least-squares solution as presented in this paper is the
cost assigned to every non-zero off-diagonal element. Figure 2
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Figure 2: Comparison between three methods to decorrelate
the gaussians. Starting point for all three methods is the LDA-
transformation (left-upper corner).
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shows the effect of the maximum likelihood optimisation and the
full and simplified least-squares optimisation. The slight differ-
ences between the three methods are due to the different inter-
pretation of how bad a certain off-diagonal element is. Note that
if there is a perfect solution to the problem (all off-diagonal ele-
ments equal to zero) it will be found by all three methods.

4. EXPERIMENTS & RESULTS

A first set of experiments was conducted on the ARPA Resource
Management task. We investigated the behaviour of the decor-
relation in function of the number of gaussians in the system,
the number of acoustic parameters and the type of preprocessing.
For all situations, 46 3-state context-independent phone models
were trained on the standard SI-109 training set, using our semi-
continuous HMM system [2]. Next, full covariance matrices are
calculated for all gaussians in the system, based on which the
decorrelation matrix is calculated. The decorrelation matrix is

then added at the end of the preprocessing stage and an updated
set of gaussians is derived from the full covariance matrices calcu-
lated in the previous step. Finally, two extra iterations of Viterbi-
training are done to adapt all parameters in the system to the new
preprocessing.

Three different types of preprocessing were investigated. All pre-
processings start from a set of 24 mean-normalised log filter-bank
outputs, and the mean-normalised log of the energy.

e Preprocessingl transforms the filter-bank outputs to
cepstral parameters (inverse cosine transform), re-
places cep[0] with the log energy and selects the first
6, 9 or 13 parameters. Finally, this set is augmented
with the first and second time derivatives (eventually
the last two second derivatives are omitted).

o Preprocessing2 does an LDA-transform on the
filter-bank outputs and selects the 6, 9 or 13 first pa-
rameters. Finally, this set is augmented with the first
and second time derivatives (eventually the last two
second derivatives are omitted).

o Preprocessingd does an LDA-transform on the
filter-bank outputs and selects the 6, 9 or 13 first pa-
rameters. Next, 5 consecutive frames are stacked and
a second LDA is performed, resulting in 16, 25 or 39
parameters.

The LDA-transforms in the described preprocessings are used to
reduce the size of the feature set, not to decorrelate. So the HMM
states are used as classes, not the gaussians.

In a first set of preliminary tests, the simplified optimisation was
compared with the full optimisation on a small set of experiments.
Both methods performed equally well on average, but since the
full optimisation is conceptually more correct, the remaining ex-
periments were done with the full optimisation.

#params.| 16 25 39 | 16 25 39 | 16 25 39
preproc. 1 preproc. 2 preproc. 3
#gauss. | average WER without the extra decorrelation step
3018 [9.10 7.62 7.30|7.98 7.22 6.99|8.66 6.89 6.65
4527 (841 7.02 6.82|7.55 634 6.61|8.15 6.74 6.16
7243 857 6.84 6.12|6.94 6.16 627|796 644 6.16
#gauss. average WER with the extra decorrelation step
3018 [8.62 698 6.28|7.98 6.74 630|794 6.72 6.37
4527 |8.38 6.50 6.31|7.51 625 598(7.74 645 592
7243 828 6.33 578|691 5.75 6.08|7.56 6.34 584
#gauss. relative improvement (percentage)
3018 53 84 140 0.0 6.6 99| 83 25 42
4527 04 74 75| 05 14 95| 50 43 39
7243 34 75 56| 04 67 30| 50 16 52

Table 1: Results on the ARPA RM test-sets (feb89 + oct89 +
feb91 + sep92) with the standard Word Pair Grammar (context-
independent modelling).

Table 1 gives an overview of the results. The use of the decorrela-
tion algorithm always results in a significant relative reduction on
the error rate, so none of the proposed preprocessings does a good



job in decorrelating the features on the gaussian level. The relative
improvement also shows to be larger when more input parameters
and/or less gaussians are used. This is in line with expectations,
since larger feature-sets in general show more correlation, while
the introduction of more gaussians reduces the complexity of the
volume a single gaussian has to model.

A second set of experiments was conducted on the Wall Street
Journal November 92 task, using context-dependent models. The
baseline system used for the task is a gender-independent cross-
word triphone tied-state reduced semi-continuous HMM sys-
tem [2]. The HMM contains 20254 gaussians in total, with which
10436 states are modelled resulting in 33169 distinct cross-word
triphones. For the preprocessing, we selected preprocessing 1
with 39 parameters. The results are shown in table 2. The decor-

train-set |2-gram Sk 2-gram 20k 3-gram 5k 3-gram 20k
WER without the extra decorrelation step
WSJo 6.61 13.34 4.09 11.13
WSJO+1 4.99 11.39 3.25 9.16
WER with the extra decorrelation step
WSJo 5.70 12.62 3.38 10.07
WSJO+1 4.50 10.46 2.62 8.54
relative improvement (percentage)
WSJo 13.8 5.4 174 9.5
WSJO+1 9.8 8.2 194 6.8
WER with maximum likelihood modelling [4]
WSJO+1 4.58 10.56 2.82 8.52
WER with the simplified decorrelation algorithm
WSJO+1 4.46 10.63 2.71 8.51

Table 2: Results on the ARPA WSJ-nov92-nvp test-sets, us-
ing the official bigram and trigram language models (context-
dependent modelling).

relation gives about 10% reduction in word error rate, irrespective
of the method being used: least-squares as presented in this paper,
or maximum likelihood.

A comparison between the decorrelation matrices for the WSJ-
task shows that the maximum likelihood optimisation and full
least-squares optimisation result in almost identical matrices: the
one matrix can be mapped on the other by multiplying with an
almost identity matrix (a 0.01 perturbation on the elements on av-
erage). The difference between the matrices obtained with the
simplified and the full least-square optimisation is about seven
times bigger. This is still a remarkable small difference given the
fact that the simplified version only has half the amount of param-
eters to optimise compared to the full optimisation.

The actual structure of the decorrelation matrix is shown in fig-
ure 3. The block structure indicates that the static, delta and delta-
delta features are almost uncorrelated on the gaussian level. Ex-
periments where the time derivatives were replaced with another
inverse cosine transform (a two dimensional IDCT-transform on
the log filter bank outputs) showed far more correlation between
static and dynamic features. The use of derivatives is thus close
to optimal if it comes to decorrelating the features.
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Figure 3: The magnitude of the elements in the transformation
matrix (WSJ0+1). White corresponds to zero.

5. CONCLUSIONS

This paper showed that an extra decorrelation of the input features
on the gaussian level can result in substantially better acoustic
models when mixtures of diagonal covariance gaussians are used
to model the observation density functions. It also showed the
equivalency between the recently published maximum likelihood
modelling for semi-tied covariance matrices and the least-squares
decorrelation approach used in this paper. We believe that pa-
rameter normalisations like the one presented in this paper will
become more and more important in the near future when more
experimental feature sets like acoustic parameters are to be used.
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