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ABSTRACT

In this paper, a novel architecture, which integrates
the recurrent neural network (RNN) based
compensation process and the hidden Markov model
(HMM) based speech recognition process into a
unified framework, is proposed. The RNN is
employed to estimate the additive bias, which
represents the telephone channel effect, in the
cepstral domain. Compensation of telephone
channel effects is implemented by subtracting the
additive bias from the cepstral coefficients of the
input utterance. The integrated recognition system is
trained based upon MCE/GPD (minimum
classification error/generalized probabilistic descent)
method with an objective function that is designed
to minimize recognition error rates. Experimental
results  for  speaker-independent = Mandarin
polysyllabic word recognition show an error rate
reduction of 21.5% compared to the baseline
system.

1. INTRODUCTION
It is generally agreed that the performance of
automatic speech recognition systems often

degrades due to a mismatch between the training
and testing environments. In applications of speech
recognition over the telephone network, the
distortion introduced by the telephone channel
(including both handset microphone and the
transmission line) is one of the major sources of
mismatching conditions. For robust telephone
speech recognition, it is essentially important to
remove the telephone channel effects.

In general, the telephone channel characteristics can
be approximated with a linear time invariant system,
h(t), for a given time interval. Based on this
assumption, the speech signal transmitted through
the telephone channel is a convolution of /(7) and
the input speech signal. In the cepstral domain, this

convolved component becomes an additive bias. It
varies with each call and increases the variability in
the observed feature space. In recent years, many
compensation approaches have been developed to
remove the additive biases from the observed
feature vectors for robust telephone speech
recognition [1][2][3][4][5]. Most of them were
implemented by spectral parameter filtering in the
front-end feature analysis and unrelated to the
recognition process.

In this paper, a novel architecture, which integrates
the RNN-based compensation process and the
HMM-based speech recognition process into a
unified framework, is proposed. The RNN is
employed to estimate the additive Dbias.
Compensation of telephone channel effects is
implemented by subtracting the additive bias from
the cepstral coefficients of the input utterance. The
integrated recognition system is trained based upon
MCE/GPD method with an objective function that is
designed to minimize recognition error rate.

This paper is organized as follows. In section 2, the
RNN-based compensation of telephone channel
effects is discussed. In section 3, a speaker-
independent =~ Mandarin ~ polysyllabic ~ word
recognition is conducted to evaluate the RNN-based
compensation method. Finally, a conclusion is given
in section 4.

2. RNN-BASED COMPENSATION OF
TELEPHONE CHANNEL EFFECTS

Previous studies showed that the interaction
between feature extraction and classification
strongly affects speech recognition performance
[6][7]. Aiming to improve the performance of
speech recognition systems, MCE/GPD [10][11] has
been used to the design of the feature extractor. All
of the adjustable parameters of both feature
extraction and speech recognition processes are



trained with a consistent objective function that is

designed to minimize recognition error rate [7][8][9].

Since our proposed RNN-based compensation
scheme is employed to remove the additive biases, it
can be regarded as a part of the feature extraction.
Figure 1 is a block diagram of showing the
integration of RNN-based compensation scheme and
HMM-based recognizer. Under a unitied framework
using the MCE/GPD training procedure, the goal is
to adjust modifiable parameters of the RNN, O,
and the HMMs, A, so as to minimize the
recognition error rate.

Before simultaneously adjusting all parameters of
the integrated recognition system by MCE/GPD, the
RNN and the HMMs are trained individually to give
good initialization. The error back-propagation
algorithm [12] is used to train the RNN. The widely
used Minimum Squared Error (MSE) criterion is
adopted as the learning criterion. Because the RNN
is used to estimate the additive bias, a linear
activation function is used in the output nodes. The
desired output target is set to be the average of the

cepstral vectors of all training tokens for a given call.

The assignment of the desired output target is
according to the following two factors: (1)
telephone channel effects are almost constant for a
given call but vary with the calls; (2) the average of
cepstral coefficients on a long period of speech
signals is a reliable estimate of the additive bias.
After the RNN has been trained, each training
utterance is bias removed by applying RNN-based
compensation process and then used in the
maximum likelihood (ML) based HMM estimation.

Let O ={o,,...,0,} and 6:{61,...,5T} be the
observation sequences of T frames before and after
bias removing by the RNN-based compensation

process, respectively. O can then be expressed as a

transformation of ) with parameters O
0=F(0;0
( 5 ) 1
=0-B

where B is the bias vector obtained by averaging
output vectors of the RNN. Assume that O belongs
to the ith class of M classes, then the objective in
MCE/GPD training is to reduce the expected loss

L(®) = E[I;(0; D)] (2)

Feature Extractor

speech| | Feature N RNN-based || Speech
Analysis Compensation Recognizer ]
A
MCE/GPD ‘
Training 4_

Figure 1: A block diagram of showing the integration of
RNN-based compensation and HMM-based recognizer.

O ={0O,A}and [ {e} is aloss function which has
a form
[;,(0;®@)=1(d,(0))
_ 1 3)
" 1+exp(—ad,(0) +b)

where d; is a class misclassification measure
taking the following form:

1,
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with 7) is a positive number.

When segmental GPD [11] is applied to update
Aand O, g,(0;®) can be defined as the log-

likelihood of the optimal state sequence
g:(0;@) =log{g;(0,q; D)}
= log{ g,(0,q; A)}

The loss function L(®) is minimized according to

&)

an iterative step
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where €, is a learning rate and U, is a positive

define matrix. Any parameter of © and A can be
update according to Eqn. (6). In our work, the
gradient can be written as the partial derivative
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The derivations for updating parameters of A can
be found in [11]. When each component of the

observation vector is treated independently,
adjustment of parameters of the RNN is as follows

98 22 afd(o) (8)

t=1 d=1

where D is the dimension of the observation vector,
f,(0,) is the output of the dth node of the RNN

with input 0,,and FE, has the following form
1 T
E,=—Y e, ©)
T3

with
( ‘uq, k.,d )

q,kd

e, (1) = Z%(q, k) (10)
is the error term propagating back to the RNN. K
is the mixture number, U and ¢ are the mean and

variance of a Gaussian distribution, respectively.

3. EXPERIMENTAL RESULTS

Simulations on a speaker-independent Mandarin
polysyllabic word recognition task are performed to
examine efficiency of the proposed method. The
vocabulary is 1038. The length of the vocabulary is
ranging from two to four syllables. A database
collected from 362 speakers calling from different
regions of Taiwan is used for simulations. A subset
of this database consisting of 7674 utterances
spoken by 292 speakers is assigned for training and
another subset of 1892 utterances spoken by 70
speakers is assigned for testing. All speech signals
were sampled at a rate of 8 kHz and preemphasized

with a digital filter, 1-— 0.95z7". It was then
analyzed for each Hamming-windowed frame of 20
ms with 10 ms frame shift. The recognition features
consist of 12 mel-cepstral coefficients, 12 delta mel-
cepstral coefficients, the delta energy, and the delta-
delta energy.

The HMM-based speech recognizer employed 138
sub-syllable models as basic recognition units,

including 100 three-state right-context-dependent
INITIAL models and 38 five-state context-
independent FINAL models. The observation
distribution for each state of the HMM was modeled
by a multivariate Gaussian mixture distribution. The
number of mixture components in each state varies
from one to ten depending on the amount of training
data, and each of the mixture components has a
diagonal covariance matrix. For silence, a single-
state model with ten mixtures is used. A three-layer
RNN, which feeds back all outputs of its hidden
layer to the input layer, is used to estimate the
additive bias. In all experiments, the number of
hidden nodes is set to be 100.

At first, a test using ML-trained recognition models
without imposing any compensation Sscheme was
performed and taken as a benchmark. A recognition
rate of 87.0% was achieved. Next, three widely used
compensation techniques, namely cepstrum mean
normalization (CMN), relative spectral (RASTA)
methodology, and signal bias removal (SBR), were
tested for comparison. The recognition rates are
summarized in Table 1. The results demonstrate that
removing the telephone channel effects significantly
improves the recognition performance. Thirdly, the
ML-trained HMMs of the recognition system with
CMN are further fine-tuned by MCE/GPD method.
A recognition rate of 89.1% was obtained. It showes
the powerfulness of MCE/GPD training method.

Finally, the proposed RNN-based compensation
scheme was tested to demonstrate its efficiency.
Prior to MCE/GPD training, the RNN is trained
independently by wusing MSE criterion. A
recognition rate of 88.9% was achieved when
applying the RNN to remove the additive biases. As
shown in Table 1, it is superior to the performances
of CMN, RASTA and SBR. In the case of
simultaneously training the RNN and the HMMs by
MCE/GDP method, the recognition rate was up to
89.8%. It is correspond to an error rate reduction of
21.5%s compared to the baseline system.

4. CONCLUSION

The work presented in this paper is devoted to the
problem of compensation of telephone channel
effects for robust telephone speech recognition. The



speech Method Recognition Error Reduction
Rate (%) Rate (%)

Baseline 87.0 -

CMN 87.8 6.2
RASTA 87.7 54

SBR 88.0 7.7
CMN+MCE 89.1 16.1

RNN 88.9 14.6
RNN+MCE 89.8 21.5

Table 1: Recognition results of various compensation
approaches.

telephone channel introduces a convolved
component in the observed speech signals. This
convolved component becomes a additive bias in the
cepstral domain. We use an RNN to estimate the
additive bias from the cepstral coefficients of the
input utterance. Aiming to improve the performance
of the speech recognition systems, a novel
architecture, which integrates the RNN-based
compensation process and the HMM-based speech
recognition process into a unified framework, is
proposed. The integrated recognition system is
trained based upon MCE/GPD method with an
objective function that is designed to minimize
recognition error rate. Experimental results for
speaker-independent Mandarin polysyllabic word
recognition show an error rate reduction of 21.5%
compared to the baseline system.
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