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ABSTRACT

This paper presents a Gaussian density ftree structure usage
which enables a computational cost reduction without a
significant degradation of recognition performances, during a
continuous speech recognition process.

The Gaussian tree structure is built from successive Gaussian
density merging. Each node of the tree is associated with a
Gaussian density, and the actual HMM densities are associated
to the leaves. We propose then a criterion to decide whether a
node belonging to a high level in the tree should be expanded or
not. The expansion means that the likelihood is evaluated with
Gaussian densities associated with a low level node if the
likelihood computed at the high level is not precise enough.

This Gaussian tree structure is evaluated with a continuous
speech recognition system on a telephone database. The
expansion criterion allows a 75 to 85% computational cost
reduction in terms of log-likelihood computations without any
significant word error rate increase during the recognition
process.

1. INTRODUCTION

The efficiency of a continuous speech recognition system
depends on the trade-off between recognition performances and
computational cost. In order to improve recognition
performances, the number of acoustic parameters is often
increased with multi-Gaussian output distributions in a classical
Hidden Markov Model (HMM). A Gaussian density splitting
procedure is used to increase the number of Gaussian densities
for each distribution during the parameters training [1].
However, the computational cost increases with the number of
acoustic parameters.

An efficient way to reduce computational cost is to decrease the
total number of log-likelihood evaluations for each observation.
A Gaussian selection method succeeding to a Gaussian density
clustering may be applied [2].

An other way to reduce computational cost is the use of a
Gaussian density tree structure [3]. A clustering algorithm was
proposed in [3] to build a tree structure. Then, during the
recognition process, the likelihood was only calculated for the N
most likely densities at each level. In this paper, we propose a
binary Gaussian tree building algorithm, and a tree search

method allowing to calculate log-likelihood during the Viterbi
decoding from only two levels in the tree.

Hence, the paper is organized as follows :

First, the study aims to use a Gaussian density merging
technique to build a Gaussian density tree structure. Here, a
bottom-up clustering strategy is applied to build a binary tree by
successive (aussian densities merging. Indeed, Gaussian
components clustering of multi-Gaussian distributions is a
classical way to tie density parameters [4].

Then, we propose a way to use this tree structure during the
speech recognition process. Two levels are useful in the tree :
the lower level corresponding to initial Gaussian densities and a
higher level. We define a criterion to decide which node
associated to a Gaussian density should be used for log-
likelihood computation. The aim is to obtain equivalent speech
recognition performances with a lower computational cost.

2. GAUSSIAN TREE STRUCTURE
BUILDING

We choose a bottom-up strategy to build a binary Gaussian
density tree structure.

2.1. Gaussian Tree Building Algorithm

Successive merging of Gaussian densities allow a binary tree to
be built. Indeed, a parent node represents the result of the
merging of two Gaussian densities representing the two child
nodes into a single Gaussian density. (Gaussian parameters
associated with a parent node are defined by merging formulas
in the next paragraph. Successive merging of Gaussian densities
associated with parentless tree nodes are applied to build parent
nodes until the tree root node.

The binary Gaussian tree structure building algorithm is then:

* The low level is defined by nodes associated
with actual HMM Gaussian densities. This level
is actually formed by the leaves of the tree.

e Until the tree root node, different levels are built
with following principles :
- merging concerns only parentless nodes,
- a Gaussian density associated with a parent
node created at a given level p can not be
merged at the same level p with another density,



- the distance between two Gaussian densities
associated with two child nodes must be lower
than an upper bound, at each level, to allow a
merging between these two densities.

This Gaussian density tree is the result of successive merging of
HMM Gaussian densities.

2.2. Gaussian Density Merging

The HMM output distribution for a frame X[t] at time 7T related
to a transition is given by:

B X[th= Max {c NXItl;n, Z)}

where N(.;p,, ) is a Gaussian density with a mean vector p,, a
diagonal covariance matrix X, , and c,, the Gaussian component
weight. NG is the number of Gaussian components of the multi-
Gaussian distribution B.

A clustering strategy is used to merge Gaussian densities. At
each step of the building algorithm, the closeness of all pairs of
Gaussian densities is evaluated in order to achieve the
appropriate merging. N(.; p,, X,) and N(; p,, X,) denote two
Gaussian functions, with p, and p, mean vectors, X, and X,
diagonal covariance matrices, to which n, and n, acoustical
frames have been associated during the training corpus. The
distance between these two functions is measured as the
decrease in the likelihood of the corresponding training set
observation after merging [S]. If d is the acoustic space
dimension, the distance D is given by:

d d d
D=-n,. Y log(c,) - n, . Y log(c,) + (n,+ n,) > log(c)
i=1 i=1 i=1
where (Z)) = (62) 5y + (Z) = (032 (B) = (62, 1s the
diagonal parameters vector of the covariance matrix resulting
from the merging.

If these two Gaussian functions are merged, the resulting
function has a number of frames equal to the sum of the number
of frames associated to the functions that are merged. Its
parameters 11, and c2 after a weight normalization, are estimated
by:

m=n,/(n +n)
n=n,/(n +n)
B=0) .0,y

G} =1;.0} +1,. 0} +1; . 1; . (U, - 1,)°

2.3. Gaussian Tree Structure Description

This building algorithm produces a tree structure which can be
described as follows.

A tree node at level p, TN(p, n, p, X), is associated with a
Gaussian density defined by classical Gaussian density
parameters, i.e. weight n, mean vector n and covariance matrix
z.

In Figure 1, a Gaussian density tree structure is characterized by
a low level and a high level. Moreover, this example shows that

for each level, all nodes at a level (here the low) are not
necessarily merged because of the third principle of the binary
tree building algorithm.
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Figure 1 : Gaussian density tree structure with a high level
(bullet) and low level (bold ring), and where each parent node is
the result of the merging of two child nodes.

After the Gaussian density tree building, only high level and low
level nodes are used during the recognition process. Indeed, log-
likelihood evaluated with a Gaussian density associated to high
level node may be enough for descendant log-likelihood
estimation, if this density is unlikely. The Gaussian tree
structure with its two specific level allows a decrease of the log-
likelihood computations.

3. GAUSSIAN TREE STRUCTURE USAGE
DURING THE VITERBI DECODING

The problem to solve during the Viterbi decoding is to obtain
good recognition performances with a Gaussian density tree
structure.

3.1. Gaussian Tree Usage Algorithm

During the recognition process, a beam search strategy is
applied [6] . That means that only log-likelihood for Gaussian
density associated with active model transitions are estimated.

Recall that the aim is the efficient use of the multi-Gaussian tree
structure to decrease the number of log-likelihood evaluations
considering emission distributions and observations. Therefore,
we choose two particular levels in the tree. First, a high level is
defined in the Gaussian tree structure, corresponding to an a
priori chosen number of nodes, i.e. a percentage of the total
number of initial Gaussian densities. The low level corresponds
to leaves of the tree.

During the Viterbi decoding, for each frame, a maximum is
evaluated among the different high level nodes log-likelihoods.
Then, the nodes of this high level for which the log-likelihood is
close to this maximum are expanded. This expansion to their
corresponding low level nodes allows a more precise evaluation
of the log-likelihood.



The algorithm may be described as follows for each frame X[t] :

» Log-likelihood evaluation of Gaussian densities
associated with a high level node.

* Log-likelihood threshold (LLT) estimation for
high level nodes which determine high level
nodes to be expanded.

» If a low level node is a descendant of a high
level node which has to be expanded, then log-
likelihood for the Gaussian density associated to
the low level descendant must be evaluated, else
the previously estimated high level node log-
likelihood is used for the Gaussian density
associated to the low level nodes.

LL1 LL2
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Figure 2 : Example of a Gaussian density structure usage during
the Viterbi decoding with log-likelihood estimation (LLN)
associated to each node.

Figure 2 means that only 4 Gaussian densities, associated to
bold nodes, are used during log-likelihood estimation in the
recognition process for this example. Indeed, only the left node
of the high level is expanded. Four log-likelihood estimations
with the tree structure are required during the Viterbi decoding
(2 at the high level and 2 at the low level) instead of 6 log-
likelihood estimation.

3.2. Criterion for Node Expanding

The criterion allows to expand a high level tree node. It consists
in determining a threshold LLT over the likelihood estimation
which applies to each high level node as described above. We
propose a criterion derived from the Minimum Description
Length [7]. This criterion is used to select nodes which have to
be expanded during the Viterbi decoding. The length is for a
recognition process the likelihood estimated for an observation
and a HMM with multi-Gaussian distribution.

This threshold is evaluated as follows :

Let X denotes the observation sequence, A, the parameters of the
model corresponding to the high level, M, the number of low
level nodes and M, the number of high level nodes. We

determine a maximum MLL over the log-likelihood for the high
level nodes allowing to compute the threshold LLT.

MLL ({X},4)= Max (log(P({X}ITN(p, n,, 1, E)))
1<k<M

h

LLT ({X}, A) = MLL ({X}, A) +%log(Mh/Ml)

a is the number of free parameters subject to estimation.
Gaussian density parameters are mean vector and diagonal
covariance matrix parameters. log(P({X}ITN(p, n, p, X))
represents the log-likelihood evaluated for the k™ node at the p®
tree level associated with the Gaussian density N(.;n,, 2).

If the log-likelihood estimated at a high level node is greater
than LLT, this high level node must be expanded. That means
that its low level child nodes need an accurate log-likelihood
estimation with initial Gaussian density parameters.

The proposed criterion allows to expand a number of nodes
which increases as the total number of high level nodes
decreases. This is coherent with the fact that, the less nodes are
used, the less precise are the log-likelihood evaluations, the less
restrictive should the criterion be. Another property deduced
from the MDL criterion is that the delta between the log-
likelihood maximum evaluated at the high level and LLT is not
function of the log-likelihood maximum but of the total number
of high and low level nodes.

4. EXPERIMENTS

This tree structure reduces the number of log-likelihood
evaluations to be computed. The approach is evaluated using a
continuous speech recognition system over a human-machine
dialogue speaker-independent telephone database [8].

4.1. Training and Test Databases

The training corpus for the task-independent part consists of
about 700 short sentences recorded by hundred of speakers
calling from different regions of France. This telephone database
contains almost all the French diphones. Moreover, a task-
dependent part is made of 5451 sentences containing 26111
words recorded by speakers dialoging with AGS dialog system.
The AGS dialog system vocabulary contains 876 words.

An evaluation of the system is achieved on a task of voice
services directory inquiry about weather forecasts and
employment. A telephone database with 724 sentences
containing 3584 words is obtained. The speech recognition
system used is obviously speaker-independent.

4.2. Gaussian Tree Structure and Criterion
Evaluation

The evaluation of the Gaussian density tree structure consists in
speech recognition tests with an a priori high level. This level



has a specific number of nodes in the tree. The node expansion
with the previously described criterion is applied at many levels
of the tree to check the criterion efficiency.

The three tables below present the evaluation results in terms of
word error rate and computational cost reduction. This
computational cost reduction is evaluated by means of the
number of log-likelihood computations using a tree structure
(Gaussian density associated with a high level node included)
compared to the number of log-likelihood computations using
only actual Gaussian densities, i.e. associated with the low level
node.

The first experiment (Table 1) involves a total number of 3210
Gaussian densities in the HMM. This case corresponds to a
single Gaussian component for each Gaussian distribution.

HLN|| 3210 1402 817 440 220 55
WER || 24.6% | 25.6% | 25.5% | 25.5% | 25.9% [25.8%
CCR 31.3% | 59.0% | 73.9% | 75.3% | 42.9%

Table 1: word error rate (WER) and computational cost
reduction (CCR) with a specific number of high level nodes
(HLN) (1 component per distribution).

A first noticeable point is that the word error rate never
decreases significantly (95% confident interval). A second point
is a maximum computational cost reduction of 75.3% for the
number of log-likelihood estimations.

Other evaluations (Tables 2 & 3) are achieved with a total
number of Gaussian densities multiplied by 2 and 4. These cases
correspond to a number of Gaussian components by distribution
equal to respectively 2 and 4.

HLN || 6243 2952 1852 1060 574 73
WER || 22.6% | 23.4% | 23.6% | 22.8% | 22.0% [22.9%
CCR 20.1% | 50.0% | 70.0% | 79.5% |46.3%

Table 2: word error rate (WER) and computational cost
reduction (CCR) with a specific number of high level nodes
(HLN) (2 components per distribution).

HLN || 711915 | 4056 2436 1377 751 195
WER||21.6% | 21.3% | 22.1% | 21.8% | 21.0% [21.4%
CCR 43.8% | 66.0% | 79.1% | 84.0% | 66.7%

Table 3: word error rate (WER) and computational cost
reduction (CCR) with a specific number of high level nodes
(HLN) (4 components per distribution)..

In terms of computational cost reduction, the tree structure
enables an important reduction of about 80%. Moreover, the
property of no significant word error rate increase is confirmed
(95% confident interval).

Also, we observe a slight word error rate decrease which we can
compare with previous multi-Gaussian densities merging study
[1]. Indeed, Gaussian density merging with multi-Gaussian
distributions (2, 4 or 8 components by distribution) allows word
error rate improvement if the total number of Gaussian densities
is divided by 2.

Finally, for the three evaluations, there is an optimum for the
number of high level nodes which is between 6% and 9% of the
total number of Gaussian densities.

5. CONCLUSION

Experiments show a 75 to 85% computational cost reduction in
terms of log-likelihood evaluation without any significant
increase of word error rate. This evaluation with different total
number of Gaussian density shows the efficiency of the
proposed criterion.

Moreover, we observe that reducing the number of Gaussian
densities when the number of Gaussian components per
distribution is more than one, may improve the word error rate.
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