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ABSTRACT"

Regarding speaker identity in forensic conditions, several
factors of variability must be taken into account, as peculiar
intra-speaker variability, forced intra-speaker variability or
channel-dependent external influences. Using ‘AHUMADA’
large speech database in Spanish, containing several recording
sessions and channels, and including different tasks for 100
male speakers, automatic speaker verification experiments are
accomplished.

Due to the inherent non-cooperative nature of speakers in
forensic applications, only text-independent recognizers are
likely to be used. In this sense, a GMM-based verification
system has been used in order to obtain quantitative results.
Maximum likelihood estimation of the models is performed,
and LPC-cepstra, delta- and delta-delta-LPCC, are used at the
parameterization stage.

With this baseline verification system, we intend to determine
how some variability sources included in ‘AHUMADA’ affect
speaker identification. Results including speaking rate
influence, single- and multi-session training and cross-channel
testing are presented when likelihood-domain normalization is
applied.

1. INTRODUCTION

It is becoming increasingly usual to find audio physical traces
(telephone calls, recorded tapes, security surveillance
recordings, etc.) in situations in which people commit a crime.
In this sense, it is essential to find reliable methods that allow
the association of an unknown voice sample with a known
person identity. Speaker Recognition is a characterization
process in which people claim to be identified by their voices.
Anyway, voice identification, specially in forensic approaches,
must take into account signal variability, which incorporates to
the identification process an additional level of complexity [1].

In this context, coping with forensic identification implies
dealing with speech variability [4, 6]. Regarding speaker
identity, several factors of variability must be taken into
account: i) Peculiar intra-speaker variability (manner of
speaking, age, gender, inter-session variability, dialectal
variations, emotional condition, etc.). ii) Forced intra-speaker
variability (Lombard effect, external-influenced stress,
cocktail-party effect). iii) Channel-dependent external
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influences (kind of microphone, bandwidth and dynamic range
reduction, electrical and acoustical noise, reverberation, etc).

In this sense, delimiting the problem of speech variability,
together with analyzing the quantitative influence of this
speech variability on the results of speaker recognition systems
may lead to an indispensable and comprehensive approach to
forensic speaker recognition.

For evaluating the influence of some of these variability
factors, ‘AHUMADA’ speech database [3, 5, 6] has been used.
Some examples of the variability factors included in
AHUMADA corpus are: In situ recordings and telephone
speech; read texts at different speech rate; read speech versus
spontaneous speech; different microphones and telephone
handsets, or inter-session variability in six different recording
sessions.

The present paper is organized as follows. Section 2 describes
‘AHUMADA’ speech corpus. Section 3 presents the
recognition system employed and the five different verification
experiments that have been carried out. Section 4 analyzes the
results previously shown. And, finally, some conclusions are
reached in Section 5.

2. ‘AHUMADA’ SPEECH CORPUS
2.1. Design of the Database

Tasks. The enrolled speakers were requested to utter the
following: a) 24 isolated digits; b) 10 digit strings consisting of
ten digits each; c¢) 10 phonologically and syllabically balanced
utterances of 8-12 word length; d) 1 phonologically and
syllabically balanced text, of about 180 words (more than 1
minute of duration), read at a normal speaking rate; e¢) Two
repetitions of the previous fixed text, asking the speakers to
read it at a fast and at a slow speaking rate; f) 1 specific text,
different from speaker to speaker and from session to session,
for each speaker; g) More than 1 minute of spontaneous
speech, asking every speaker to describe (avoiding long pauses
and hesitations) whatever they wanted.

Phonological and Syllabic Balance. Tasks c) and d) have been
specifically designed in order to reproduce the frequency of
appearance of phonemes and syllabic schemes, mostly found in
spoken Castilian Spanish [7]. The selected lexicon corresponds
to the most usual in Spanish. The ‘standard’ frequency of
appearance (from now on called “Reference”) used in the
design phase was measured over an oral corpus of more than
20,000 words.



Recording sessions. Six recording sessions were established.
Sessions 1, 3 and 5 were in situ recorded in a quiet studio-like
room and supervised by a trained operator. In each of these in
situ recordings, two different input channels (microphones)
were simultaneously used. The notation used to specify both
microphones in each case is MICn_1 and MICn_2, were n
corresponds to one of the three possible sessions.

Time Interval between Sessions. Following, it can be found
the time intervals between the first in situ session and the rest
of them: a) Session 2 (telephone): 73% of recordings were
done within 15 days interval from session 1. b) Session 3 (in
situ): 80% of recordings were done between 20 and 40 days
after session 1. c¢) Session 4 (telephone): 73% of recordings
were accomplished in a time interval of 15 to 50 from session
1. d) Session 5 (in situ): The minimum interval between
session 1 and session 5 is 30 days. 77% of them were acquired
between 40 and 80 days after session 1. €) Session 6 (telephone
and microphone): The minimum time interval of session 6
recordings is 30 days after session 1. 78% of speech material
was recorded between 40 and 80 days after session 1.

2.2. Technical Features and Audio
Equipment

Recording Microphones. The relation of microphones is a s
follows: MIC1_1, MIC3_1 and MIC5_1 correspond to the
same microphone, namely SONY ECM-66B, lapel
unidirectional electret type, at about 10 cm. from the speaker
mouth. MIC1 2 is an AKG D80S dynamic cardioid
microphone, placed on a desk at about 30 cm. from speaker.
MIC3 2 is an AKG C410-B head-mounted dynamic
microphone. MIC5_2 is a low-cost Creative Labs desk
microphone for PC sound-card applications.

Telephone Handsets. In sessions 2, 4 and 6, conventional
telephone line was used to collect the data. In session 2, every
speaker was making a phone call from the same telephone,
namely T2_1, in an internal-routing call. In session 4, speakers
were requested to make a local call from their own home
telephone, T4_1, trying to search a quiet environment (they
were asked to be alone in a closed room). In session 6, a local
call was made from a quiet room, using 10 randomly selected
standard handsets (Reynolds, 1997a), T6_0 to T6_9.

Recording-Room Acoustics. A quiet room was selected to
accomplish the recordings of sessions 1, 3, 5. No anechoic
chamber or acoustic cabin was used, as it was desired to have
real-environment recording conditions (in terms of
reverberation), although maintaining low noise levels. To
avoid undesired room reverberation, several acoustic panels
were placed around the desk where recordings were performed.
An equivalent noise level of only 27 dBA was measured, and
the upper limit for the reverberation time in a third-octave
band analysis was 0.48 sec.

Signal-to-Noise Ratio. We have specifically calculated
Signal-to-noise ratio (SNR) as the logarithmic ratio between
RMS power of the speech signal and RMS power of the noise.
For noise, here we understand the non-speech part of the
analyzed segment. For speech, continuously-speaking

segments of at least 3 sec. have been selected in order to
calculate the RMS power of the whole segment as RMS power
of speech. After the application of the high-pass FIR filter
designed to reject the low components (under 65 Hz.) of the
noise present, we get an average SNR value of 40.1 dB, for 10
randomly selected speakers and tasks through all the
microphone and telephone speech.

Speech Intelligibility. In our study, Rapid STI, namely
RASTI (Steeneken, 1985), has been measured. RASTI measure
reduces to 9 values the original 98 STI values. These 9 values
are 4 modulation frequencies for the octave band centered at
500 Hz. and 5 modulation frequencies for the octave band
centered at 2 kHz. It is assumed that RASTI values over 0.75
are equivalent to excellent intelligibility. Six different points of
the room were randomly selected in order to determine RASTT;
the values obtained cover a range from 0.73 to 0.81. RASTI
values were obtained using a Briiel & Kjar RASTI type 3361
measuring equipment.

3. THE OVERALL VERIFICATION
SYSTEM

3.1. System Description

In order to perform some speaker recognition tests over the
available data, a speaker verification system has been used [6].
As we wanted to evaluate text-independent verification results,
Gaussian Mixture Models (GMM) have been used [8]. Tests
have been accomplished over a subset of (randomly selected)
25 speakers from the total number of 104 available speakers.
All studio-recorded speech material used for training and
testing has been down-sampled to 8 kHz. (from the original
sampling frequency of 16 kHz.). Cepstral features and their
derivatives have been used taking analysis frames of 30 ms.
every 15 ms., with Hamming windowing and pre-emphasis
factor of 0.97 are used as input to the system. For both training
and testing, silences longer than 0.8 s. have been removed. All
25 speakers were used as claimants for their corresponding
models and as impostors for the rest of speaker models.

Likelihood-Domain Normalization of Scores. As the density
at point X (input sequence) for all speakers other than the true
speaker, S, is frequently dominated by the density for the
nearest reference speaker, we have applied the following
normalization criterion [2]:

logZL(X) =logp(X|S=S.)— max logp(X|S)
Se ref,S#Sc

where S_ means claimed speaker model.

Speaker verification rates. Balance between false rejection
error and false alarm errors is searched, so equal error rate
(EER) for each speaker is computed, and average EER through
all speakers for each case is presented in the next section.

3.2 Speaker Verification Experiments

Experiment 1: Channel effect varying parameterization. In
this first test, 40 secs. of speech from task d) (fixed read text)
for each speaker have been used in the training stage. All



speech used in this training stage has been acquired from
channel MIC1 1. Different feature vectors have been also
used, namely cepstral coefficients derived from LPC analysis
(LPCC), and their first and second derivatives, A- and AA-
cepstral coefficients. In this way, 3 different models have been
trained for each speaker: 1 model with 10 LPCC, 1 model with
10 LPCC+ALPCC and 1 model with 10 LPCC+ALPCC+
AALPCC.

In the testing stage, speech utterances from task d) have also
been used, but using now channel MIC1_2 (same session,
second channel). Results in Figure 1 show how microphone
mismatch and derivative coefficients affect speaker
verification results as a function of test utterance duration.
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Figure 1: Speaker verification results in terms of EER. Models
trained with 40 s. read speech from MIC1_1. Tests with 5, 10
and 15 s. of read speech from MIC1_2. Results also show the
improvements when using first and second derivative
coefficients.

Experiment 2: Influence of changes in speaking rate. In this
experiment, the influence of speaking rate on our recognition
system is measured. In the training phase, models were
generated with 40 sec. of read speech at a normal speaking rate
(task d), using 10 LPCC+ ALPCC.

At the testing stage, speech utterances from task e) were
selected, which means that read speech at both a fast and a
slow speaking rate has been used. Figure 2 shows the results of
this verification experiment, showing the effect of mismatch
speaking rate between training and testing.
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Figure 2: Speaker verification results, when testing is
accomplished using read speech at both fast and slow speaking
rate, and training considers only normal read speaking rate.

Experiment 3: Effect of multi-session training. This
experiment concerns to the evaluation of the influence of
single-session training versus multi-session training when
multiple sessions are available in speaker identification tests.
In this sense, results when only session 1 (40 sec.) is used for
training and session 5 used for recognition are compared with
testing in these same conditions when training is accomplished
in sessions 1 and 3 (20 sec. from each session). It is important
to note that all the microphones involved in this experiment 3
are always the same (MIC1_1, MIC3_1 and MIC5_1).

Figure 3 shows the results of this comparative experiment,
when 10 LPCC+ ALPCC are used as input features.
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Figure 3: Speaker verification rates showing comparative
analysis between single-session trained models (session 1) and
multi-session trained models (session 1 and 3). Testing is
accomplished over the same speech utterances, selected from
session 5.

Experiment 4: Channel compensation through multi-
session training. In this experiment, the training phase is
identical to that accomplished in Experiment 3, thus obtaining
single-session (session 1) and multi-session (sessions 1 and 3)
models for each speaker.

For testing, in this case, speech utterances from session 5 have
been used. Nevertheless, in this case, these testing utterances
were obtained from MIC5_2, while training utterances came
from MIC1_1 and MIC3_1. Results presented in Figure 4 show
single- and multi-session training behavior facing microphone
changes in testing phase.
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Figure 4: Verification results in terms of EER when training is
done in a single- (session 1, MIC1_1) or multi-session manner
(session 1 and 3, MIC1_1 and MIC3_1), and testing is realized
with speech material from session 5 and microphone MIC5_2.

Experiment 5: Multi-session and cross-channel training.
The train phase has been accomplished as follows: 20 sec. from



MIC1_1 plus 20 sec. from MIC3_2, both using task d)
utterances, and 10 LPCC+ ALPCC features.

For the verification process, results have been obtained from
utterances using MIC5_2 and also from MIC1_2. Figure 5
shows the scores obtained in terms of the EER.
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Figure 5: Speaker verification results, when multi-session and
cross-channel training is done (MIC1_1 and MIC3_2). Testing
phase has been carried out with utterances from MIC5_2 and
MIC1_2.

4. EVALUATION OF SPEAKER
VERIFICATION RESULTS

As Experiment 1 illustrates, training and testing in channel
mismatch conditions provoke degradation in verification
results. The length of the testing utterance improves results
significantly, as well as the use of first and second derivative
cepstral feature vector. From the worse case (5 sec. length,
only 10 LPCC) to the best one (15 sec., 10 LPCC+ ALPCC+
AALPCC) EER is reduced by 50%, which is a remarkable gain,
particularly taking into account that these are factors that in
many cases can be voluntarily selected.

Experiment 2 shows that speaking rate is not a decisive factor
causing degradation in verification results, and only a small
influence is observed.

On the contrary, Experiment 3 shows the enormous influence
of multi-session training on verification results. When only
Session 1 is used for training, and testing is accomplished in
Session 5, BERs varying from 3.9% to 2.4% are found.
However, when training is done considering both Session 1 and
3, results are drastically reduced to 0.6% to 0.1%.

Experiment 4 also shows interesting results, specifically that
multi-session training is effective not only in multi-session
testing, but also in channel compensation: EER decreases from
55% to 1.9% on MIC5_2 when training includes not only
MIC1 1, but also MIC3 1.

Finally, Experiment 5 confirms the effectiveness of multi-
session training in channel normalization, as similar results are
obtained in channel MIC1_2 as in MIC5_2, when training is
done using MIC1_1 and MIC3_2. Training with different
session and microphones consistently improves results on
other sessions and other microphones.

5. CONCLUSIONS

Speech variability is one of the dominant questions involved in
speaker identification, specially when applied to the forensic
field. In this contribution, some of these variability factors
have been quantitatively analyzed, determining their objective
influence over automatic systems.

Roughly, it can be said that channel compensation and multi-
session training are two of the most outstanding factors, in
terms of their effect over speaker verification results.
Specifically, some of the experiments conducted show that
multi-session training has beneficial effects on channel
compensation.

On the other hand, factors like speaking rate (fast / normal /
slow) do not seem to be specially important in terms of their
influence on the recognition rates.
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