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ABSTRACT

This paper describes a new method for generating the recombi-
nation weights in sub-band based speaker verification. The
approach, which is based on the use of background speaker
models, attempts to reduce the effect of any mismatch between
the band-limited segments of the test utterance and the corres-
ponding sections in the target speaker model. The discussion
also includes an analysis of other possible methods for determi-
ning these weights. Moreover, a problem generally associated
with the sub-band cepstral features is pointed out and a possi-
ble solution is presented.

1. INTRODUCTION

The concept of splitting the entire frequency domain into sub-
bands and processing the spectra in these bands independently
in between every consecutive recombination stage to generate a
final score has recently been proposed for speech recognition
[51[7]. Some of the aspects of this technique have also been
studied for the task of speaker recognition [3][4].

The main motivation for this approach is that it allows for a
selective de-emphasis of sub-bands that are affected by narrow
band noise and it permits the emphasis of the sub-bands which
are more specific to the target speaker. It also provides the
possibility of relaxing the conventional time-synchrony assump-
tion between the sub-bands [5]. Moreover, the approach allows
a closer simulation of the human perception [1].

A critical issue in the sub-band based approach is the determi-
nation of recombination weights. This paper introduces a novel
method for generating these weights for the purpose of speaker
verification. The technique is based on the use of a set of back-
ground speaker models. The underlying idea is to obtain a set
of dynamic or run-time recombination weights for each sub-
band based on the argument that if, due to certain time and fre-
quency localised anomalies, there is some degree of mismatch
between a particular band-limited segment of the test utterance
(produced by the true speaker) and the corresponding section in
the target model, then a similar level of mismatch should exist
between the considered test segment and the corresponding
sections in the background speaker models.

It is believed that through an appropriate selection of the back-
ground speaker models, the above weighting scheme may lead
to the emphasis of the sub-bands that are more specific to the
target speaker. The idea is based on the view that the mean

separation between the scores of the target and background
speaker models for a particular sub-band is a measure of the
performance of that sub-band for the given target speaker.

The paper is organised in the following manner. The next sec-
tion presents the sub-band based speaker verification method
used in this work. Section 3 describes conventional techniques
for estimating the recombination weights and then details the
proposed method. Section 4 gives a description of the utilised
speech database, and the method used for the extraction of sub-
band feature vectors. The experimental work and results are
detailed in Section 5, and the overall conclusions are presented
in Section 6.

2. ADOPTED APPROACH

For the purpose of this study, each registered speaker is repre-
sented using a set of hidden Markov models (HMMs) in which
each model is formed separately in different sub-bands using
the standard training algorithm. Moreover, the Viterbi algori-
thm is modified as follows (this modified version is referred to
as sub-band Viterbi, i.e. SBV, algorithm) :
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where ay; are the state transition probabilities associated with
the s sub-band model, by(Oy) is the probability for observing
the /™ test vector of the s® sub-band in the j* state of the s™
sub-band model, N is the number of states in each sub-band
model, T is the number of test vectors in each sub-band, S is
the number of sub-bands and wi(s) are the recombination
weights which will be defined in the next section. It should be
pointed out that in the above formulation it is inherently
assumed that the sub-band recombination is at the frame level.
This is because a set of preliminary experiments has indicated
that such a recombination level yields the highest recognition
accuracy in speaker verification (a similar result has been
reported for speech recognition [7]).



3. ESTIMATION OF RECOMBINATION
WEIGHTS

This section focuses on the possible methods for estimating the
required recombination weights. The discussions start with the
adaptation of certain existing techniques for this purpose [5][7]
[9]. A novel approach is then introduced which is shown to be
considerably more effective.

3.1. Use of a Priori Knowledge of the Sub-
Band Performance

A method for computing the required weights is based on the
knowledge of the relative performance of sub-bands which is
gained through a series of experiments using a given set of
speech data. For example, if the average verification rates for
the sub-bands 1,2,...,S are ri,r,...,;s respectively at a given
speech unit level (e.g. phoneme, syllable, word), then the
required weights may be specified as :

3 <s<
wio=r/¥r, t=esS ®)
~ T <t<T

where T” and T” are the boundaries of the considered speech
unit. The above formulation implies that the weights are linea-
rly proportional to normalised verification rates. Alternatively,
based on the argument that such linear schemes may not be the
most effective approach for this purpose, the verification rates
may be used in a non-linear procedure to compute the required
weights. For example
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Comparing this approach with that described by equation (5),
it can be seen that in this case, the sub-bands with higher
relative verification rates are weighted more heavily. Another,
perhaps more effective, mechanism for the non-linear recombi-
nation of sub-bands is the discriminative training method [5]
[7]. In this technique the required weights are chosen in such a
way that the rate of misclassifications is minimised for the
given set of data.

In general, the above approaches are expected to improve the
verification accuracy by appropriately emphasising the sub-
bands that are more specific to the target speaker. However,
since the weights are computed prior to the verification process,
if a test utterance (produced by the true speaker) is contami-
nated in the regions where the weights are relatively high, then
the techniques can lead to an increase in the false rejection
error. An obvious way of tackling this problem is to incorporate
the contamination level of the test utterance into the process of
generating the weights. The techniques of this category are
described in the following sections.

3.2. Use of the Segmental SNR in Each
Sub-Band

In order to reduce the effect of additive, band-limited noise, the
recombination weights may be computed as SNR dependent.
An important issue in this approach is the estimation of the
noise levels. A common method for this purpose is the use of
the noise spectrum in the last few non-speech segments pre-
ceding the speech utterance. In such an approach, the required
weights can be specified as follows :

w,(s) = ﬁ {1 - ((I)(t,s)/ z{ o, s)]} (8)

where @(+) is a non-linear function which controls the heavi-
ness of weights according to the local SNR. A number of
possible types of this function can be derived from the theory
of spectral subtraction [9]. An example of this is
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where K” and K’ are the indices of the upper and lower freq-
uency boundaries of the s sub-band, Y is a scaling factor,
Brax(k) is the maximum noise magnitude at Kt frequency index
in the considered noise frames, and the p(-) is the presumed
band-limited frame level SNR which is given as :

p(t k) = |X(1,k)|/| B(.K)| (10)
where IX(-)l and IB(-)| are the estimates for the spectral magni-

tudes of the smoothed noisy speech and the noise respectively

(9]

The main assumption in the above approach is that the inter-
fering noise remains stationary during speech activities. This,
however, cannot be the case in many practical applications. In
order to tackle the problem, an approach has been proposed in
[8]. The technique involves the use of spectral magnitude
distributions of the band-limited speech segments. The
estimation of the noise levels is in fact based on the peak shifts
observed in these distributions. A disadvantage in this method
is that, for accurate estimation of the noise level, a relatively
large speech segment (typically in the range of 0.5-2.0 s) is
required. The technique proposed in the present work not only
deals with this problem effectively, but also handles the effects
of various other forms of undesired mismatches that may be
speaker generated or due to the environmental and comm-
unication channel noise.

3.3. Dynamic Recombination Weights (DRW)

As described earlier, in order to determine the recombination
weights according to the level of mismatch between the band-
limited segments of the test utterance and corresponding
sections in the sub-band models of the target speaker, use can
be made of either the speaker independent sub-band models or
a set of sub-band speaker models that are capable of competing
with the target model. In the latter case the required competing
speaker models can be selected based on their closeness to
either the target model or the test utterance [2]. For the reason
stated below, the second approach was chosen in this study.
Based on this method, recombination weights can be defined as
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where M is the number of speakers in the selected competing
set and by, ,(O,) is the probability for observing the ™ test
vector of s sub-band in the ¢(s,f) state of the m™ competing
speaker models. In order to obtain the required state sequences,
the test utterance has to be time-aligned with the sub-band
models of each competing speaker using the Viterbi algorithm
and then the backtrack procedure has to be applied.

It should be noted that in order for the above weighting scheme
to be meaningful, the corresponding states in the sub-band
models of the target speaker and each of the competing spea-
kers have to represent equivalent acoustic events. This equiva-
lency can be encouraged during the training procedure by using
the speaker independent sub-band models to initialise or seed
the training of all required sets of the sub-band models.

The main attraction of the adopted approach for choosing the
competing speaker models is its superior ability in reducing the
false acceptance error [2]. This is because when the test utte-
rance is produced by an impostor, the competing speaker
models will be close to the test contour and not necessarily to
the target model. As a result, b(Oy) and [w,(s)]'1 both will
become small and thereby the probability of false acceptance
will be reduced significantly

4. SPEECH DATA AND FEATURES

The speech data used for this study was a subset of the BT
Millar speech database [3]. The subset consisted of 25 repeti-
tions of digit utterances one to nine and zero spoken by 20 male
speakers of about the same age. The first 10 versions of each
utterance were reserved for training and the remaining 15
formed the standard test set. The adopted subset, which was
recorded in a quiet environment, had a bandwidth of 3.1 kHz
and a sample rate of 8.0 kHz.

In the experimental study two different sets of sub-band
features were considered. These were SB-MFBOs and SB-
MEFCCs (the abbreviations SB, MFBOs and MFCCs stand for
sub-band, mel-scale filterbank outputs and mel frequency
cepstral coefficients respectively). In order to generate these
features, the utterances were first pre-emphasised using a first-
order digital filter. Each utterance was then segmented into 32
ms frames at intervals of 16 ms using a Hamming window, and
subjected to an 8" order fast Fourier transform (FFT). The
resulting energy spectrum for each frame was analysed appro-
priately using a mel-scale filterbank [6]. The frequency range
was divided into four overlapping sub-bands covering the freq-
uency intervals 0-600 Hz, 500-1149 Hz, 1000-2297 Hz, and
2000-4000 Hz. The log-energy outputs of the filterbank were
then grouped according to these sub-bands to obtain SB-
MFBOs. In order to compute SB-MFCCs, a discrete cosine
transform (DCT) was applied to each group of SB-MFBOs.

The full-band feature sets which were used for the purpose of
comparative studies were MFBOs and MFCCs. The former
was a cascade of the corresponding groups of SB-MFBOs and
the latter was obtained by applying a DCT to the resultant set
of MFBOs.

5. EXPERIMENTAL INVESTIGATION

For the purpose of experiments an adverse effect was simul-
ated by contaminating 1/3 of the test utterances with a narrow
band noise (0-600 Hz). The HMM configuration used was a
four state left-to-right structure without the "skip"” transition
and two Gaussian mixture per state. The first set of experime-
nts were conducted using the SB-MFBO features. The results
of this study are presented as a function of SNR in Figure 1. In
order to perform a meaningful comparison, the figure also
includes the results obtained for three other techniques in a
similar experimental condition. These methods are the conven-
tional full-band HMM (FB-HMM), FB-HMM with unconstr-
ained cohort normalisation (FB-HMM+UCN) [2] and sub-band
HMMs with SNR based recombination weights (SNR-RW).
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Figure 1 : Relative performance of the considered full- and sub-
band approaches as a function of SNR for SB-MFBO features.

The robustness of DRW is clearly evident from these results.
The figure also shows the benefit of using the score normalisa-
tion in the full-band approach. Moreover, SNR-RW appears to
work reasonably well in compensating the effect of interfe-
rence. This may be expected because the contamination here is
due to additive noise. However, it should be emphasised again
that this method, unlike DRW or UCN, cannot be used in
tackling the effects of various other forms of interference.

The above experiments were repeated using SB-MFCCs. The
results of this investigation are presented in Figure 2. As
before, the DRW method exhibits a relatively flat response
across the considered SNR range. However, the overall perfor-
mance of FB-HMM+UCN is noticeably better than that of the
DRW approach. The reason for this must be the way SB-
MFCCs are generated. As described earlier, the generation of
these parameters involves the use of independent DCTs in each
sub-band. The purpose of this is to obtain a separate set of rela-
tively uncorrelated features for individual sub-bands. However,
this can also result in a more detailed representation of the
overall spectral envelope variations [10]. For example, in the
case of four sub-bands, the detail of the overall spectral varia-
tions measured by the 1% and 2™ DCT basis functions of the
different sub-bands are rather similar to that of 4® and 8 DCT
basis functions of the full-band respectively (Figure 3). This
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Figure 2 : EER for different approaches as a function of SNR
using SB-MFCCs / SB-MFCCs and CMFCCs.

implies that an alternative subset of SB-MFCCs does not exist
to represent details of the spectral variations that are described
by any of the full-band MFCCs 1-3, 5-7, and so forth.
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Figure 3 : Comparison between the full and sub-band DCT
basis functions.

A method to tackle this problem is to generate an additional
model for the target speaker and also for each of the competing
speakers using MFCCs that are not represented by SB-MFCCs.
Since these features are complementary to SB-MFCCs they are
referred to as CMFCCs. In this case, the SBV algorithm has to
be modified by replacing the term

ST log(w, (95, (0,))

in equations (1) and (2) with
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where, o is a combination factor between 0 and 1,0, is the it
CMFCC vector of the test utterance, b(O)) is the probability for
observing O’ in the /™ state of the CMFCC based model of the
target speaker, and w/(s) is a weighting factor which is com-
puted using the CMFCC based competing speaker models. The
use of these weights provides the possibility of correcting each
frame level score in accordance with the associated level of
mismatch. It is clear that, due to the involvement of the full-
band features, the benefits of the sub-band processing cannot
be fully realised. However, the experimental results (with o =
0.5) presented in Figure 2 imply that the gains which can be
achieved through the use of these full-band features in the
above manner are more significant.

6. CONCLUSIONS

A new method for determining the recombination weights in
sub-band based speaker verification has been presented. The
approach is based on the use of background speaker models
and aims to reduces the effect of the mismatch between the
band-limited segments of test utterance and the corresponding
sections in the target speaker model. The effectiveness of this
approach was clearly observed in the experimental study cond-
ucted using SB-MFBOs. However, this result was not repeated
when SB-MFCCs were used. The reason for this was found to
be the lack of spectral information in SB-MFCCs. This diffi-
culty was, to a certain extent, overcome by using a set of com-
plementary features. Finally, it should be pointed out that
although the experimental work was carried out using narrow
band noise, the proposed approach is capable of handling any
form of undesired mismatch which may be due to the time-
and/or frequency-localised anomalies.
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