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1. ABSTRACT

In a human-machine interaction (dialog) the statistical lan-
guage variations are large among different stages of the
dialog and across different speakers. Moreover, spoken
dialog systems require extensive training data for training
adaptive language models. In this paper we address the
problem of open-vocabulary language models allowing the
user for any possible response at each stage of the dia-
log. We propose a novel off-line adaptation of stochastic
language models effective for their generalization (open-
vocabulary) and selective (dialog context) properties. We
outline the integration of the finite state dialog model and
the language model adaptation algorithm. The performance
of the speech recognition and understanding language mod-
els are evaluated with the Carmen Sandiego multimodal
computer game. The new language models give an overall
understanding error rate reduction of 44% over the base-
line system.

2. INTRODUCTION

In the standard speech recognition paradigm, language mod-
els exploit the lexical context statistics (word tuples) ob-
served in a training set to predict word sequences probabil-
ities on a held-out set (test set). In the last decade, this has
been the framework for many DARPA projects (e.g. ATIS,
Wall Street Journal, etc.) that did not consider directly the
statistical language variation in a human-machine interac-
tion. In contrast with this scenario, spoken dialog systems
for restricted domains provide a negotiation-oriented ap-
proach to task automation (e.g., flight/train travel planning,
automated call routing, computer games etc.) [1, 2, 3, 10].
In general the word sequence distribution at stage s; of
the dialog, is dependent on the entire interaction history.
Hence, it is more appropriate to conceive the LVSR as
a statistical model that dynamically adapts to the differ-
ent stages of the human-machine negotiations for complet-
ing successfully the task successfully.! Learning language
models that adapt to different events along a spoken dialog
session is tightly coupled with the state sequence associ-
ated to the human-machine interaction. Without loss of

n this paper we will perform experiments with an off-line adaptation scheme,
while the algorithms proposed are applicable in an on-line scheme.

generality, we can assume that each user's response cor-
responds to a state of the dialog model. In this case, the
entire transaction is associated to a state sequence and the
model is defined in terms of the states and state transitions.
The state sj; is then used as a predictor to compute the word

sequence probability P (w1, ws, ..., wn|sk):
P(wy,we, ..., wx|sg) = H P(w;jlun, wa, ..., wj—1; sk)
)
(D
The computation of the probability

P(w;jlun, wy, ..., wj_1; s,) can be decomposed into two
subproblems. The first addresses the problem of predicting
the word sequence probability computation given the state
Sk. The second involves the estimation of
P(w;jlwr, wy, ..., wj_1; sg). Inprevious research reports,
the dialog model has been used to partition the whole set
of utterances spoken in the dialog sessions into subsets
(first sub-problem) and then train standard n-gram lan-
guage models (second sub-problem) [2, 4]. This way,
the user can only utter words that he has previously spo-
ken in a specific dialog state. Such language model design
does not allow for on-line error recovery from speech un-
derstanding or dialog prediction errors. Thus, the main
disadvantages of this approach are the poor language cov-
erage at each state of the dialog and data fragmentation.
In other related work, the estimation problem is solved by
linear interpolation [4] or maximum entropy models [7],
speaker backoff models [6] or MAP training [5]. In this
work we take the approach of training language models
for each state s in such a way that the user can interact in
an open-ended way without any constraint on the expected
action at any point of the negotiation. In order to boost the
expected probability of any event at state s; we propose
a novel algorithm for stochastic finite state machine adap-
tation. In the following section we outline the stochastic
finite state machine representation of the language model
and the novel adaptation algorithm. Then, we describe the
system components (understanding and dialog model) as
applied to a computer game application. In the last sec-
tion we discuss the performance of the novel adaptation
paradigm along with the speech recognition and under-
standing evaluations.



3. LANGUAGE MODELING

Our approach to language modeling is based on the Vari-
able Ngram Stochastic Automaton (VNSA) representation
and learning algorithms first introduced in [8, 9]. The
VNSA is a non-deterministic stochastic automaton that al-
lows for parsing any possible sequence of words drawn
from a given vocabulary V. In its simplest implemen-
tation the state ¢ in the Stochastic Finite State Machine
(SFSM) encapsulates the lexical (word sequence) history
of a word sequence. Each state recognizes a symbol w; €
V. The probability of going from state ¢;_; to ¢; (and
recognize the symbol associated to ¢;) is the state tran-
sition probability, P(q;|¢;—1). Stochastic finite state ma-
chines represent in a compact way the probability distribu-
tion over all possible word sequences. The probability of
a word sequence W can be associated to a state sequence
v = a1,...,qn and to the probability P (], ). For a
non-deterministic finite state machine the probability of W/
is then given by P(W) = 3, P(&jy ). Moreover, by ap-
propriately defining the state space to incorporate lexical
and extra lexical information, the VNSA formalism can
generate a wide class of probability distribution (i.e., stan-
dard word n-gram, class-based, phrase-based, etc.) [9].

3.1. Language Model Adaptation

In spoken language system design, the state of the dialog
sy is used as predictor for the most likely user response.
For example, if in a particular state s; the computer asks a
confirmation question (YES-NO) the most likely response
will be in the YES-NO equivalent class. However, due to
dialog model error predictions and to speech understand-
ing errors, we want to let the user move from one state to
any state of the dialog. We achieve this goal by building
language models that are open in vocabulary for each state
sp. At the same time we adapt language models for each
stage on the expected users' responses.

The set of all user's observed responses at a specific stage
i of the dialog is split into training 75 (), 7 = 0), de-
velopment (5;) and test (£;) sets. We train a context in-
dependent Variable Ngram Stochastic Automaton A7 on
the training set 7 = | J,, 7x. While, AT has full coverage
over all possible word sequences W at any state s, it does
not provide a selective model for a given dialog state pre-
diction. Thus, we build the adapted language models A}
as to maximize the stochastic separation from the generic
model A7, The model A} is thus computed as the solution
of the log likelihood maximization problem:

AL = argmax log P(Bi|\) 2)
>\k

where the model A# is estimated as a linear interpolation
of the language model A” and a state dependent model ).
For each set 7; we run Viterbi training starting from the
generic model A7 and estimate the transition probabilities

of the SFSM ;. In order to account for unseen transitions
we smooth the transition probabilities with the standard
discount techniques discussed in [9]. The transition prob-
abilities for the model /\24 are then computed as follows:

P (gilaj-1) = anPT(q51gj-1) + (1 = i) Pe(g5la;-1)
3
The solution to equation 2 with respect to the param-
eters o, cannot be given in an explicit form. Hence, we
use a greedy algorithm over the development sets B to
find the local optimum over a finite number of «;, values.
In general there may not be enough data to have sufficient
statistics from the training sets 7. In these cases we re-
place the Viterbi training estimates Py (¢;|¢;—1) with prior
distributions. The complete block diagram, describing the
adaptation scenario and training algorithm steps is shown
in Fig. 1.
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Figure 1: Block Diagram for the Language Model Adap-
tation Algorithm

4. DIALOG FLOW MODEL

In this section, a formal representation of the “dialog flow™
of a general human-machine interaction with multimodal
input and output is introduced. A user-initiated “dialog”
is assumed which is typical for gaming applications. Fur-
ther, it is assumed that the user input is interpreted by the
application free of context. These assumptions simplify
the discussion that follows but can be easily relaxed. The
central notion of the dialog flow model is the state s;, that
we define in terms of user input and system outputs. If ¢,
is a multimodal user input to the application and o; is the
multimodal output in response to input ¢, then a typical
transaction is

~~~it—1_>0t—1'_>it_>0t'_>it+1_>Ot+1~~~ (4)
S———— —— S—————

s(t=1) 5(t) s(t41)



where s(t) is the dialog state at time ¢ and s(t) = s, k =
1, ..., K. Further we define 7, to be the set of all user in-
puts that trigger state s, and O}, the set of system outputs
that is produced when the system leaves state s, i.e., all
system responses to input ¢, € Z;. Under the assumption
of context-free interpretation of user input: ¢; €Z; — o: €
Oy,. Thus, we formulate the understanding problem as the
mapping from the input ¢, into the dialog state s;. User
input class 7, will be referred henceforth as a dialog state
class.

Let us now define a prompt-based (or output-based)
class A, = T U B, U & as the set of all user inputs
that come as a response to a system output from Oy, i.e.,
Ai = {iy : Joi_1 € Og, 0,1 > 1, }. Note the difference
between Ay and T, = {i; : Jo, € Ok, iy — o}. One
can guarantee that 7, contains semantically equivalent ut-
terances (since they all trigger the same action sj) but the
same is not necessarily true for .Aj. Finally, note that the
classification of user input into dialog state class Ay re-
quires solving the understanding problem, while mapping
the user's input into the prompt based classes A;, is done
automatically by the system (s(¢ — 1) is known at time ?).
As aresult Ty, By and £ can be used in an unsupervised
language adaptation scheme as proposed in section 3.1.

5. UNDERSTANDING MODEL

As discussed in Section 4 the understanding problem is
defined here as determining the dialog state s(¢) given the
user input ¢;. A typical statistical approach to this problem
involves constructing a model L from the training set 7
using a maximum likelihood criterion and then determin-
ing the dialog state from the user input as:

k= argmkaXP(Lkﬁt) = argmkax{P(it|Lk)P(Lk)}.

If user input is given as a text string then 7 is a set
of transcribed sentences. A simple statistical model for 7,
is the computation of the word sequence probability corre-
sponding to the user's utterance. For this purpose we have
used the Variable Ngram Stochastic Automaton [9]. Re-
call that n-grams have been used extensively for language
modeling and well-established learning algorithms exist in
the literature. If L is the n-gram statistical model trained
from 7, and the input utterance ¢; = wyws..wy is repre-
sented as @, w, then

P(Lylit) & P(Li| @D wn) [(cons) 2 *nEE0] (5)

nw, €Ly

where w, € Lj signifies that word w,, is in vocabulary
drawn from L2, d(w, ¢ Li) = 1 for out of vocabulary
(O0OV) word (else 0) and ¢, is a task dependent constant
penalty for deletion of OOV words from input ¢,. The se-
lected dialog state s, is the one that maximizes Eq.(5). The

2Symbol Ly is used for both the Ngram model and the set of all utterances
produced by this model.

train test
utterance class utter. | utter. | leng. | oov
prompt-top 4320 | 1499 | 5.1 | 2.5%

prompt-search 581 204 45 | 7.8%
prompt-profile | 509 175 48 | 4.1%
prompt-t ravel 629 172 50 | 29%
all 6039 | 2050 | 5.0 | 2.0%

Table 1: Corpus statistics: total number of utterances
(shown for both training and testing corpora), average
sentence length, out-of-vocabulary rate for Aj, where
si 1s: top (navigation and query), search (database),
profile (database entry) or travel.

trigram grammar
State adapt-1 adapt-2
PP WA PP WA

prompt-t op 35 | 818% | 40 | 824%
prompt-search 11.1 | 59.3% | 14.6 | 579%
prompt-profile | 82 | 67.1% | 9.5 | 64.2%
prompt-travel 70 | 718% | 40 | 74.5%
all 77.7% 78.0%

Table 2: Word accuracy (WA) and Perplexity (PP) per
prompt-based dialog state for adapted trigram language
models across different dialog states s; and test sets .

existence of OOV words in the transcribed input string z; is
common for closed vocabulary systems. Moreover, OOV
words might appear even when ¢; is the output of an au-
tomatic speech recognizer because in general the training
corpus 7, for understanding model L is a subset of the
language model training corpus 7, i.e., Z C Z. Note that
more sophisticated strategies can be used for dealing with
OOV words, e.g., by labeling some words in each train-
ing set 7, as OOV (using held out data) and by including
the “O0OV” label explicitly in L. Further, techniques for
dealing with sparse data can be borrowed from the lan-
guage modeling literature, e.g., introduction of concepts
or word/phrase super-classes. A detailed discussion of the
understanding model is beyond the scope of this paper.

6. EXPERIMENTAL RESULTS

The algorithms proposed above have been applied to the
“Carmen Sandiego” task. In [1], data have been collected
and analyzed from 160 children ages 8-14 using voice to
interact with the popular computer game “Where in the
U.S.A. is Carmen Sandiego?” by Brgderbund. To success-
fully complete the game (i.e., arrest the appropriate sus-
pect, two subtasks have to be completed), namely, deter-
mining the physical characteristics of the suspect to issue
an arrest warrant and tracking the suspect's whereabouts



Word Accuracy
ASR grammar | baseline | adapt-1 | adapt-2
phrase-unigram | 71.1% 73.1%
bigram 739% | 748% | 74.7%
phrase-bigram 76.2% 77.0%
trigram 778% | 771.7% | 78.0%
phrase-trigram 77.7% 78.1%

Table 3: Word Accuracy before and after language adapta-
tion and for different language models.

(in one of fifty U.S. states). The game is rich in dialog
subtasks including: navigation and multiple queries (talk
to cartoon characters on the game screen), database en-
try (filling the suspects profile), and database search (look
up clues in a geographical database). Using the dialog
flow notation introduced in Section 4 we have defined four
dialog states: top (navigation and queries), profile
(database entry), search (database) and travel (to a
U.S. state). For a better understanding of the semantic de-
scription of the dialog states see [1]. All collected utter-
ances 7; have been manually assigned to the correct state
sy, that they trigger according to the definition of 7. The
training set | J,, 7 consists of 6039 utterances collected
from 51 speakers and the test set consists of 2050 utter-
ances from 20 speakers. In Table 1 the differences in out-
of-vocabulary rate and test set perplexity is shown for the
prompt based states. Note the uneven distribution and
sparseness of both training and testing data.

Context independent hidden Markov Models (HMMs) us-
ing three states and sixteen Gaussians to model each phone
were trained. VNSAs were used for language modeling
with N = 1,2, 3; specifically, word bigram and trigram,
and phrase unigram, bigram and trigram. Finally, word
trigrams were trained from 7 and used as understanding
models Ly (coop = 10). Results are reported for speech
recognition (labeled “word accuracy”), and sentence clas-
sification. The baseline system is based on the context
independent language model \7. Two algorithms were
used for language adaptation. The first one used data only
from 7 to constructed prompt-based language models Ay
(referred to as “adapt-17). The second algorithm used all
training datato estimate A} (referred to as “adapt-2”). The
speech recognition results are shown in Table 2 and 3. In
Table 2, we compare the Word Accuracy for the two adap-
tation schemes “adapt-1" and “adapt-2” for a trigram lan-
guage model. The open-vocabulary model A}, gives 3-10%
error rate reduction for the most populated dialog state
classes. The search and profile dialog states are the
most difficult test sets due to the high OOV rates (see Ta-
ble 1) and lack of training/adaptation data. Word accu-
racy has increased due to better probability estimates (all
data is used for adaptation) and larger language coverage
across different states of the dialog. The speech under-

standing task has been carried over the pre-defined four
dialog states according to the model delivered by equa-
tion 5. Understanding accuracy is computed as the number
of correctly classified state labels over the total number of
state labels. The overall (| J, &) understanding accuracy
from speech using a closed-vocabulary trigram language
model (P (Lg|i;) in equation 5) is 91.8%, achieving a 44%
error rate reduction over the baseline system (85.4%). The
understanding performances per state s; are not uniform
and range between 4% (top) and 19% (profile). We
expect, that a more accurate understanding model based
on A} could outperform the model estimates based on the
OOV factor (¢,,, ) factorization.

7. CONCLUSION

In this paper we have proposed a novel adaptation scheme
for language modeling in the framework of spoken lan-
guage system. Data sparseness is a serious problem for
stochastic language modeling for large vocabulary systems.
Moreover, the sparseness problem is even more acute in
presence of data fragmentation, and that is the case of spo-
ken dialog systems. For these reasons, a major challenge
in stochastic language modeling is to exploit all available
data while providing reliable probabilities conditioned on
the dialog state. In this work, we have shown, that our
adaptation scheme is effective in delivering statistically re-
liable probability estimates and increasing the language
coverage at any state sg.
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