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ABSTRACT

In this paper, we propose to use an utterance length (duration) de-
pendent threshold for rejecting an unknown input utterance with
a general speech (garbage) model. A general speech model, com-
paring with more sophisticated anti-subword models, is a more
viable solution to the utterance rejection problem for low-cost ap-
plications with stringent storage and computational constraints.
However, the rejection performance using such a general model
with a fixed, universal rejection threshold is in general worse
than the anti-models with higher discriminations. Without adding
complexities to the rejection algorithm, we propose to vary the
rejection threshold according to the utterance length. The experi-
mental results show that significant improvement in rejection per-
formance can be obtained by using the proposed, length depen-
dent rejection threshold over a fixed threshold. We investigate
utterance rejection in a command phrase recognition task. The
equal error rate, a good figure of merit for calibrating the perfor-
mance of utterance verification algorithms, is reduced by almost
23% when the proposed length dependent threshold is used.

1. INTRODUCTION

In this paper, we have investigated the problem of rejecting an un-
known input utterance using a general speech model. The state
of the art speech recognition systems, especially one operating in
an “open-mic” mode generally need a rejection algorithm to ac-
cept or reject a recognized utterance. The rejection is typically
formulated as a hypothesis testing procedure. In statistical hy-
pothesis testing, the null hypothesis, Ho, that the input speech
utterance O = 84,0z, ..., 07 is correctly recognized, is tested
against the alternate hypothesis, H;, that the input utterance is
incorrectly recognized. Note that alternate hypothesis includes
cases where an in-grammar utterance is classified incorrectly as
other in-grammar phrases and all out-of-grammar utterances. If
the probability distribution for the null and alternative hypoth-
esis are known exactly, then according to the Neyman-Pearson
Lemma, the optimal test (in the sense of maximum power test)
is the likelihood ratio test. The null hypothesis, Ho, is accepted
if the likelihood ratio between the null and alternate hypothesis
exceeds a critical threshold, rejected, otherwise[1]. This criterion
expressed in log-domain and normalized by the utterance length
is,

Ly = %(logP(O|H0)—logP(O|H1)) >, (D

where T is the length of the input utterance, log P(O|Hop) and
log P(O|H,) are the log-probability of the input utterance for
the null hypothesis and the alternate hypothesis, respectively, and
7 is the critical threshold of the test.

Significant work has been done in the areas of keyword spotting

and non-keyword rejection using general speech models. In [2],
the likelihood of a filler (or garbage) model was used to construct
a score for detecting keywords. In [3], a set of features including
the likelihood of a garbage model were used to form a classifier
for rejecting both non-keywords and recognition errors. Recently,
anti-subword models have been used to perform utterance verifi-
cation. In [4] a discriminatively trained, vocabulary independent
utterance verification using anti-subword models was proposed.
This method attempts to reject speech utterances contains no key-
words and keywords but incorrectly recognized. In other work
[5, 6], discriminative training procedure [7] was used to train anti-
digit models to improve the rejection performance for connected
digit recognition. In [6], techniques were proposed to adapt the re-
jection threshold to improve rejection performance in mismatched
training and testing conditions. Rejection of a keyword is usually
conducted either at segment or utterance level.

In this paper, we address the issue of improving rejection perfor-
mance without using anti-models for rejection. The storage and/or
computational complexity constraints of a “thin”” DSP-based rec-
ognizer justify such an investigation. Typical consumer prod-
ucts like cellular phones, digital answering machines in which
enhanced features like automatic speech recognition are highly
desirable as long as only minimal cost is added. Under the above
mentioned physical constraints, we investigate how to improve re-
jection performance using only a simple, general speech (garbage)
model.

The probability of alternative hypothesis is computed based upon
the general speech (garbage) model while the null hypothesis is
evaluated using the phone or word models. We propose the use of
a threshold » which depends upon the utterance length. We show
that for our recognition task, significant rejection performance im-
provement can be obtained, particularly for short utterances by
using rejection threshold that varies with the length of input ut-
terance. We investigate utterance rejection in a command phrase
recognition task. A database of digit strings is used for rejecting
out-of-vocabulary (OOV) utterances.

2. REJECTION USING UTTERANCE
LENGTH DEPENDENT THRESHOLD

For our HMM-based speech recognition system, the log-
probability of the input utterance given the null-hypothesis,
log P(O|Hy), is estimated as the log-likelihood of the recognized
utterance for the decoding grammar. Figure 1 shows an example
of a grammar which can be used to recognize one of n different
phrases.

The log-likelihood of the input utterance given the alternate hy-
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Figure 1: Phrase grammar.

pothesis, is computed over a three state hidden Markov model,
trained on a large speech database. This model, known as a
garbage model, represents the broad general characteristics of
speech signals. Previously, single state general speech model was
similarly used for speaker verification [8]. In our experiments,
the three-state model (with same topology as sub-word models)
are used as a generic phoneme or garbage model. we found in our
experiments that the single-state model did not perform as well as
the three-state garbage model. A grammar shown in figure 2 is
used to compute the log-likelihood of the input utterance, given
that it belongs to the alternate hypothesis.

Note that in Eq. 1, the utterance length is used as a normaliza-
tion factor. The rejection criterion is then given by the following
equation.

Lr { iZ;rwise, i:ﬁz )
NULL
gbg #
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Figure 2: Garbage loop grammar used to obtain the likelihood
of alternative hypothesis. Note that “gbg” represents the garbage
model and “#” represents the background (silence) model.

In this paper, we have used the following modified likelihood ratio
measure, normalized by the magnitude of the log-likelihood value
|log P(O|Hop)| and expressed as a percentage, as described be-
low.

I, = (log P(O|Ho) —log P(O|Hy))

|log P(O|Ho)

We find that the modified likelihood ratio measure in Eq. 3 tends
to be more resilient to changes of grammar used in recognition.
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Figure 3: Scatter plot of the modified likelihood ratio for in-
grammar command phrases. These include the correctly recog-
nized as well as incorrectly recognized utterances.

The normalization used in the equation is also an implicit normal-
ization by the utterance length. This confidence measure has been
used in [9] for verbal information verification. Figure 3 shows a
scatter plot of the modified likelihood ratio as a function of the
utterance length, for a database of command phrases, given the
command phrase grammar. The command phrases are used as
in-grammar utterances.

Figure 4 shows a scatter plot of the likelihood ratios for out-of-
vocabulary digit string utterances. Digit strings are used in this
study as out-of-vocabulary (OOV) utterances. Several points can
be noted from the two figures.

1. The likelihood ratio for in-grammar utterances is mostly
positive for all utterance lengths. However, the likelihood
ratio for out-of-vocabulary utterances, is negative for long
utterances while a significant number of short utterances
have positive likelihood ratios.

2. For long utterances, the distribution of likelihood ratios has
smaller standard deviation than the standard deviation for
short utterances.

When more flexible grammar such as a free-phone decoding is
used, more alternative search paths are allowed and higher like-
lihood values can thus be obtained than a more rigid grammar.
Also, while pruning techniques like beam search can become
more effective when the decoding search is deep into the utter-
ance, the phrase grammar of the null hypothesis presents very
little constraint in short utterance decoding. The garbage loop
grammar for the alternative hypothesis, on the other hand, im-
poses more or less uniform decoding constraints, independent of
the utterance length. As a consequence of varying level of con-
straints for the null and alternate hypothesis, the likelihood ratio
shows different distribution for different utterance lengths. As a
result rejection threshold should be chosen as a function of utter-
ance length to obtain a better performance. we propose to model
the threshold # as a polynomial function of the utterance length.
That is, the threshold is

n(T) = na T  Fan 2T 2 4+ . 4+ a1T a0, @



where, n — 1 is the order of the polynomial, and a;,0 < 1 < n are
the coefficients of the polynomial. Note that n = 2 results in a
first-order, linear approximation. Further simplification leads to a
piece-wise constant function. Let S¢ = 7;,0 < ¢ < N represent
a set of utterance lengths such that

Tel offTiea <T <1, )
Tn = oo and Ty = 0. A separate rejection threshold #;,0 <

1 < N is derived for each interval representing the input utterance
lengths.
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Figure 4: Scatter plot of modified likelihood ratio for a command-
phrase grammar with digit strings as OOV utterances.

Next we describe our experimental setup and the resultant rejec-
tion performance using the proposed algorithm. We compare the
rejection performance between a fixed and the proposed utterance
length dependent thresholds.

3. EXPERIMENTAL RESULTS

In our experiments, we use mono-phone (i.e., context-
independent), sub-word units. Each sub-word unit is a modeled
as 3-state hidden Markov model with 8 Gaussian mixture com-
ponents per state. Each digit is modeled as a 16-states HMM
and each state is parameterized by 8 mixture Gaussian compo-
nents. The background (silence) model is a single-state, 16-
mixture component model. Once every 10 ms, twenty-five fea-
tures (12-cepstral, 12-delta cepstral and 1 delta-energy) are com-
puted for a frame of 30 ms speech samples. A separate 3-state,
64-mixtures per state, general speech (garbage) model is trained
using digit strings and command phrases.

A test database of 1,638 phrases is used to perform the recognition
test. The command phrases are in-grammar sentences. A 1,327
connected digit strings are used for testing out-of-vocabulary re-
jection. The digit database consists of strings of varying lengths
(1, 4,7, and 10 digits).

A real-time recognizer was used for recognition experiments us-
ing sequential Cepstral Mean Subtraction (CMS) to equalize pos-
sible channel difference between training and testing data. The
baseline recognition accuracy for the phrase database is 90.5%.
For rejection experiments, the misrecognized utterances (9.52%)
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Figure 5: Receiver operating characteristic when a constant
threshold is used for all utterance lengths.

were used in conjunction with the digit strings as alternative hy-
pothesis (since the misrecognized utterances should also be re-
jected).

Figure 5 shows the receiver operating characteristics (ROC) as a
function of the rejection threshold when a single threshold is used
to make an accept/reject decision.

In our experiment we partition the set of input utterances into sev-
eral bins according to their utterance lengths. Both the command
phrases and the digit strings are divided into two approximately
equal sets. The first set of sentences from the phrase and digit
databases are used to derive rejection thresholds for achieving
equal error rate. The equal error rate rejection thresholds so de-
rived are then used to evaluate the performance on the second set
of sentences. Table 1 shows the Type I and Type II errors when
a single, fixed threshold is used for all utterances. Table 2 shows
the errors when different rejection thresholds are selected accord-
ing to the interval to which the utterance length belongs. Several
remarks can be made:

1. Short utterances contribute towards majority of the overall
erTorS.

2. A comparison of the first rows in table 1 and table 2 shows
that there is a reduction of errors for short utterances (less
than 200 frames) by almost 30%. The error reduction for
very long utterances (longer than 450 frames) is about 26%.
The performance for utterances with intermediate lengths
(between 200 and 450 frames) is basically unchanged.

3. Table 2 shows that lower rejection thresholds should be used
for longer utterances. This is consistent with the proposed
algorithm in this paper that the rejection threshold should be
modeled as a length dependent variable, rather than a con-
stant.

4. There is an overall improvement of 22.5% in rejection per-
formance.

Figure 6 shows the equal error rate threshold as a function of
the utterance length. Note that the equal error rate threshold
for shorter utterances is significantly higher than the fixed, sin-
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Figure 6: A comparison of the equal error rate threshold when
a single threshold is selected with the variable equal error rate
threshold for different utterance length intervals.

gle threshold. For longer utterances, the length dependent equal
error rate threshold is lower than the fixed threshold.

It is important to point out that a different approximation to the
polynomial of equation 4 (other than the piecewise constant ap-
proximation used in our experiments) could be employed to fur-
ther enhance the performance. In particular, a first-ordered, linear
approximation should be particularly beneficial for shorter utter-
ances.

Length Threshold # in Error/Total Utterances
(in frames) Typel [ Typell |  Total
0-200 1.35 21/273 | 107/256 | 128/529
200-300 1.35 20/212 4/65 24 /277
300-450 1.35 35/145 5/188 30/333
>450 1.35 42/ 111 3/232 45/333
Total 1.35 | 118 /741 | 119/ 741 | 237/1482 |

Table 1: Rejection performance on test database for different ut-
terance lengths for single equal error rate rejection threshold.

4. DISCUSSION

In this paper, we have presented a simple but effective technique
to improve the rejection performance of an automatic speech
recognition system. A general speech model is used to obtain
the likelihood for the alternative hypothesis in making an ac-
cept/reject decision. We have shown that the normalized likeli-
hood ratio can be modeled as a high-order polynomial in utter-
ance length than just a fixed constant. The experiments show that
the a simple, piecewise constant approximation to the polynomial
results in a reduction of almost 23% in both false alarms (Type I
error) and false rejection (Type I) errors at equal error rate. The
rejection performance of shorter utterances can be improved sig-
nificantly when an utterance length dependent rejection threshold
is used.

The technique presented in this paper can be applied to improve
the performance of barge-in, or detecting a partial valid phrase

Length Threshold # in Error/Total Utterances
(in frames) Type I | Type II | Total
0-200 2.29 46 /273 | 44 /256 90 /529
200-300 1.18 16/212 5/65 19/277
300-450 0.81 18/145 | 22/188 40/ 333
>450 0.57 11/111 | 22/232 33/333
| Total | | 91 /741 | 93 /741 | 184 /1482 |

Table 2: Rejection performance on test database for different ut-
terance lengths for a different equal error rate rejection threshold
for each utterance length interval.

before the end of an utterance. Just like rejection, detection of
a partial valid phrase is more difficult in the earlier stage than
later. A length-dependent threshold should be equally effective in
improving the barge-in detection, especially in the early part of
the utterance.

The length dependent threshold if incorporated explicitly in a
rejection algorithm where more sophisticated, discriminatively
trained anti-models are used, the high performance can be even
further improved.
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