THE BBN SINGLE-PHONETIC-TREE FAST-MATCH
ALGORITHM

Long Nguyen and Richard Schwartz

BBN Technologies, GTE Internetworking
Cambridge, MA 02138, USA
In@bbn.com

ABSTRACT

In this paper we present a very fast and accurate fast-match
algorithm which, when followed by a regular beam search re-
stricted within only the subset of words selected by the fast-
match, can speed up the recognition process by at least two
orders of magnitude in comparison to a typical single-pass
speech recognizer utilizing the Viterbi (or Beam) search algo-
rithm. This is a novel fast-match algorithm that has two im-
portant properties: high-accuracy recognition and run-time
proportional to only the cube root of the vocabulary size.

1. INTRODUCTION

In January 1993, at a DARPA workshop held at MIT, BBN
demonstrated for the first time ever a real-time, 20K-word,
speaker-independent, continuous speech recognition system,
implemented in software on an off-the-shelf workstation. One
part of the algorithm was published soon thereafter [1]. How-
ever, the fast-match part of the algorithm, which has recently
received a US patent [2], has not been described until now.
While a number of fast-match algorithms have been pub-
lished, the BBN algorithm continues to have novel features
that have not appeared in the literature. The fast-match al-
gorithm has two important properties: high-accuracy recog-
nition and run-time proportional to only the cube root of the
vocabulary size.

In this algorithm, the vocabulary is organized as a phonetic
tree similar to Ney’s [3]. However, in contrast to prior ap-
proaches in which several copies of the trees are needed in
order to use a word bigram language model, the innovation
in this algorithm allows us to use a word bigram language
model with just a single phonetic tree. In the remainder of
the paper, we will present in detail how we construct such a
phonetic tree and how to estimate the acoustic and language
models. Then we will explain the search algorithm and re-
port our finding about the computational requirements.

2. PHONETIC TREE

Assume a vocabulary that consists of the following three
words, ‘abc’, ‘abed’, and ‘ade’ whose phonetic pronunciations

b[c]&

a[b]c

&[a]b,d b[c]d

c[d]&

a[d]e

dle]&

Figure 1: The phonetic tree for a hypothetical lexicon of
three words ‘abc’, ‘abed’, and ‘ade’.

are a-b-c, a-b-c-d, and a-d-e respectively. The phonetic
tree for this vocabulary can be constructed as illustrated in
Figure 1. The annotations next to the nodes are the compos-
ite triphones of the phonemes associated with the nodes. For
example, &[a]b,d denotes a composite triphone for phoneme
‘a’ whose left context is the boundary with the special sym-
bol ‘&’ and right context is phonemes ‘b’ or ‘d’. That is,
the special triphone &[a]b,d is a composition of two nor-
mal triphones &[a]b and &[a]d. All other nodes can be
intepreted in the same manner; for example, b[c]d is a com-
posite triphone for phoneme ¢ whose left context is phoneme
b and right context d.

There are probably some unique characteristics of this type
of phonetic tree in comparison to other types of lexical trees
studied before, such as that of Ney’s [3]. First, the phonemes
are associated with the nodes rather than the arcs of the tree.
Second, the last phoneme node of each word is kept unique,
even if the word is a substring of another word. Third, each
node in the tree is associated with a set ¢d representing the
set of words which share this node. The last two character-
istics of this type of phonetic tree make it possible to use a
word bigram language model during the search without tree
copying.

3. ACOUSTIC MODELS

With the phonetic tree constructed as in Figure 1 where each
node represents a (possibly shared) triphone, the acoustic
model for the composite triphone associated with that node
can be approximated as a weighted average of the corre-
spondent normal triphones. For a Tied Mixture (TM) or
Phonetically-Tied Mixture (PTM) or State-Clustered Tied-
Mixture (STM) model [4], the correspondent normal tri-
phones share the same codebook (i.e. a Gaussian mixture)
whereas their mixture weights are separate. Then the com-
posite triphone would use that same codebook and its mix-
ture weights are the weighted average of the mixture weights
of the correspondent normal triphones. For example, the
. . &[alb,d . .
mixture weight v; for component j of the Gaussian
mixture for composite triphone &[a]b,d is calculated as:

&lalb,d _ ”}&[a]b + b 4 ”f[a]d + ctleld
Yj = &lalb 1 o&lald

where v} stands for the mixture weight for component j of
the normal triphone x and ¢® stands for the EM (training)
count of the normal triphone z.

4. LANGUAGE MODELS

In the same manner as done for the acoustic models, we can
approximate a bigram language model for these nodes as
well. In contrast to previous approaches where the language
bigram probability is applied either at the first phoneme or
the last phoneme node with some form of tree copying, our
algorithm allows us to apply the language probability cu-
mulatively over all composite triphone nodes of the words in
the single tree. Assume the same phonetic tree as in Fig-
ure 1, and some word w has just ended, we want to apply
the probability of going into node &[a]b,d. Since all three
words, ‘abc’, ‘abed’, and ‘ade’, share this node, the probabil-
ity of going into node &[a]b,d given the preceding word w
would be

Pr(&[a]b, d|w) = Pr(abc|w) + Pr(abed|w) + Pr(ade|w).
Similarly,
Pr(alblc|w) = Pr(abc|w) + Pr(abed|w),

Pr(b[c]&|w) = Pr{abclw),
Pr(b[c]d|w) = Pr{c[d]&|w) = Pr{abed|w),

and
Pr(ald]e|w) = Pr(d[e]&|w) = Pr(ade|w).

We call this language model a composite set bigram model
since it is the collection of the conditional probability of a set
of words that share a composite triphone given a preceding
word. Note that, since the last phonemes of the words are
not shared, the sets associated with the leaves are singletons
(i.e. sets which consist of a single member). Consequently,
the conditional probability of the set at the last phoneme of

a word given a preceding word is just the usual word bigram
probability.

The lower-order composite set ngrams (i.e. the set unigrams)
can alse be approximated in the same manner.

To say it another way, the composite set bigram language
model used in this fast-match is a different representation of
the usual word bigram language model with some additions.
First, the usual Pr{w;|w;) now becomes Pr({w;}|w;), where
{w;} is the singleton set that consists of only w;. Pr{w;)
becomes Pr({w;}). For some set s; which includes more
than one member, Pr(s;|w;) = ZVwkESi Pr(wg|w;). And

Pr(si) =3y, es, Prwe).
5. THE SEARCH ALGORITHM

The search algorithm is similar to the time-synchronous
beam search [5] with a small addition to use the compos-
ite set bigrams. Again, assume the same phonetic tree as
before, at some time ¢, some k words end. Let af be the
partial path score from the beginning of the sentence up to
word w; at time ¢, node &[a]b,d will be activated with the
product score

s = arg maxlgigk{ozf * Pr(&[a]b, d|w;)}. ey

That is, we search over the k ending words for the best word
to go into node &[a]b,d. The value of s and the time ¢ are
then associated and carried along with node &[a]b,d during
its duration. At some #; frames later, with an exit score s,
&[a]b,d will activate a[b]c and a[d]e with the products

!
U = arg maxlgigk{ozf * Pr(a[ble|w;)} * S;

and ,

v = arg max, ¢;<p{af * Pr(aldlefw:)} « =

respectively. Note that, we still search over the same k
ending words at time ¢. Both a[b]c and a[d]e carry along
with them the time ¢, and the values u and v respectively.
Note that the division s'/s in effect takes out the temporary
composite set bigram Pr(&[a]b, d|w;) used in the preceding
node. This is the case since s’ is the product of s and the
acoustic score for node &[a]b,d from time ¢ to time ¢ + ¢;.

Then after some ¢3 frames later, agssume that node a[b]c ends
with an exit score u'. In turn, a[b]c will activate b[c]& and
b[c]d with the products

’

p =arg maxlgigk{ozf * Pr(b[c]&|w;)} * %

and ,
q = arg max, ¢;cp {af * Pr(bleldjuw)} x =
respectively.

Recall that by the design of the phonetic tree, the com-
posite set associated with the node representing the last

phoneme of the word is a singleton set. So, for node b[c]&,
Pr(b[c]&|w;) = Pr({abc}|w;) = Pr(abc|w;). Consequently,
the search algorithm really uses a true word bigram lan-
guage model when it reaches the last phoneme of the word.
All other set bigrams used for the interior nodes could be
considered as partial or temporary language model scores.
The gradual amortization of the language model score makes
pruning much more efficient and robust.

Eventually, node b[c]& will end, say at 3 frames later, and
the search will cycle back to the propagation mentioned in
Equation 1 for the root node of the phonetic tree with a
new value sfl't’,"f1+t2+t3. As reflected in Equation 1, the word
bigram Pr(b[c]&|w;) is not taken out (as those composite
set bigrams at the interior nodes are, through the division

s'/s and o' [u, etc...).

In general, the propagation of theories on this phonetic tree
is quite similar to that of a beam search on a linear lexicon,
except for the addition of the adjustment of the composite
set bigrams when approaching a phoneme node: To activate
a node, we temporarily use some composite bigram proba-
bility; to leave that node, we remove that temporary bigram
probability. The closer the search approaches the end of the
word, it uses a more complete bigram probability.

5.1. Normalized Forward-Backward

As described in [6], the only goal of this fast-match is to keep
the likely word endings and their partial scores to guide the
second pass. This can be simply done by maintaining a list
of words ending at each frame and their partial scores. At
each time frame, we record the score of the final state of each
word ending. Let Qf be the set of words ending at time ¢,
and ozfvi be the partial path score up to word w; at time ¢.
Each ozfvi represents the probability of the speech from the
beginning of the utterance up to time ¢ given the most likely
word sequence ending with word w; times the probability of
the language model for that word sequence.

As described in [7] and [8], the second backward pass is essen-
tially the time-synchronous beam search. When some word
w ends at some time ¢ with a partial score 3, (3 is similar to
« in the forward pass but from the end of the utterance up
to w), instead of activating the whole lexicon as in the linear
lexicon beam search, we only activate those words w; € Q¢!
if they satisfy the following condition:

t—1
O, B

max at~! max 3

* Pr{w;|w, w;) >~

where w; is the best ‘preceding’ word of w, and # is the
forward-backward pruning threshold.

5.2. Admissibility

The fast-match algorithm is clearly not admissible in a strict

sense. However, although the best result from the fast-match
is not as accurate as the full search, we find in very large

studies that it never causes increased error for the second
pass.

5.3. Efficiency Issues

It is possible to make the fast-match run as fast as possible
provided that it can save sufficiently good words ending at
each frame for the second pass. We typically save about
100 words. The first thing that can speed up the search is
to minimize k& in Equation 1 (This also helps all the other
arg max, .;<,of... evaluation as well). Right after saving
these k& words to guide the second pass later, this list can be
truncated to leave only a few high-score words. Empirically,
we observed that for a 20000-word demo system, k can be 4
or 3.

Another part of the computation that takes a long time is the
access to the bigram probabilities, since these are normally
stored in a compact representation. To avoid this, we estab-
lish a bigram cache for a few active states (ending words).
For each of these states, we have a random access array of
all of the bigram probabilities.

We can also save computation by not evaluating
arg max, ., ., {af+Pr(a new destination node|w;)} when the
set id of the new destination node is the same as that of the
source node. Instead, we use the same result evaluated when
going into the source node before. This can be detected eas-
ily by checking if there is only one out arc from the source
node. This is true since, from the design of the phonetic tree,
if there is only one out arc at a node, the destination node
has the same set id as the source node.

6. COMPUTATION VERSUS
VOCABULARY SIZE

To learn how the computation of this search strategy (fast-
match followed by a trigram Forward-Backward beam search
[8]) grows with vocabulary size, we measured the computa-
tion required at three different vocabulary sizes: 1500 words,
5000 words, and 20000 words. The time required, as a frac-
tion of real time, is shown plotted against the vocabulary
size in Figure 2. As can be seen, the computation increases
very slowly with increased vocabulary.

To understand the behavior better, we plotted the same
numbers on a log-log scale in Figure 3. Here we can see
that the three points fall neatly on a straight line, leading
us to the conclusion that the computation grows as a power
of the vocabulary size. Solving the equation gives us the
formula

time = 0.03V'/3

where V is the vocabulary size.

This is very encouraging, since it means that if we can de-
crease the computation needed by a small factor, it would
be feasible to increase the vocabulary size by a larger factor,
making recognition with very large vocabularies possible.

0.8143 q

0.5131 EE

Time (xRT)

0.3434f : .

i
0.15 0.5 2
Vocabulary x 10%

Figure 2: Run time vs. vocabulary size, linear scale, mea-
sured on an HP735 with 400 Meg RAM in 1993

As a matter of fact, a year later in 1994 after some code
optimization, this search strategy could run in less-than real
time with a 40000 word vocabulary.

7. SUMMARY

‘We have described a novel fast-match algorithm based on a
single phonetic tree. There are some unique characteristics
in this proposed lexical tree which made it possible to use
a word bigram language model during the search without
tree copying. On this phonetic tree, all the last phonemes
of the words in the lexicon always locate at the leaves of the
tree. Each node of the tree is assigned a set id represent-
ing a group of words which share this node. The acoustic
phoneme models associated with the nodes are the composite
triphones where there could be more than one right context.
In comparison to the usual triphone models, there is only a
small difference for these composite triphones: the mixture
weights of the composite triphones are the weighted average
of the correspondent triphones. We also showed the trans-
formation of the usual word bigram language model into a
composite set bigram language model. With this compos-
ite set bigram language model, we could apply the language
probabilities in a cumulative fashion at every phoneme node
of the word without tree copying. The search itself is quite
similar to the usual time-synchronous beam search with one
addition: to activate a node, we temporarily use some com-
posite bigram probability; to leave that node, we take out
that temporary bigram probability. The fast-match can run
as fast as possible provided that it can save sufficiently good
words ending at each frame to guide the second pass. Finally,
we demonstrated that the computation required by this al-
gorithm grows as the cube root of the vocabulary size, which
means that real-time recognition with very large vocabular-
ies is feasible.

Acknowledgements

This work was supported in part by the Defense Advanced
Research Projects Agency and monitored by Ft. Huachuca

0.8143 q

05131 B

0.3434 B

Time (xRT)

5000 20000

Vocabulary

1500

Figure 3: Run time vs. vocabulary size, log-log scale, mea-
sured on an HP735 with 400 Meg RAM in 1993

under contract No. DABT63-94-C-0063. The views and find-
ings contained in this material are those of the authors and
do not necessarily reflect the position or policy of the Gov-
ernment and no official endorsement should be inferred.

8. REFERENCES

1. Nguyen, L., Schwartz, R., et al., “Search Algorithms for
Software-Only Real-time Recognition”, Proc. of ARPA
Human Language Technology Workshop, Princeton, NJ,
Mar. 1993, Princeton, NJ., pp. 411-414.

2. Schwartz, R., Nguyen, L., “Single Tree Method for Gram-
mar Directed, Very Large Vocabulary Speech Recog-
nizer”, US Patent 5621859, Apr. 1997.

3. Ney, H., Haeb-Umbach, R., Tran, B.-H., Oerder, M., “Im-
provements in Beam Search for 10000-Word Continuous
Speech Recognition”, Proc. ICASSP ’92, San Francisco,
CA., Mar. 1992, pp. 1.9-12.

4. Nguyen, L., Anastasakos, T., Kubala, F., LaPre, C.,
Makhoul, J., Schwartz, R., Yuan, N., Zavaliagkos, G.,
Zhao, Y., “The 1994 BBN/BYBLOS Speech Recognition
System”, Proc. of ARPA Spoken Language Systems Tech-
nology Workshop, Austin, TX, Jan. 1995, pp. 77-81.

5. Lowerre, B. T., “The Harpy Speech Recognition System”,
PhD Thesis, Carnegie-Mellon University, 1976, Pitts-
burgh, PA.

6. Nguyen, L., Schwartz, R., “Efficient 2-Pass N-Best De-
coder”, Proc. EuroSpeech ’97, Rhodes, Greece, Sep. 1997,
pp. 167-170.

7. Austin, S., Schwartz, R., Placeway, P., “The Forward-
Backward Search Algorithm”, Proc. of IEEE ICASSP-91,
Toronto, Canada, May 1991, pp. 697-700.

8. Schwartz, R., Nguyen, L., Makhoul, J., “Multiple-Pass
Search Strategy”, Automatic Speech and Speaker Recog-
nittion: Advanced Topics, Kluwer Academic Publishers,
Boston, 1996, pp.429-456.

