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ABSTRACT 

We present a new algorithm for speaker recognition (the 
Sequential Non-Parametric system, or SNP) that has the 
potential to overcome two limitations of the current approaches. 
It uses sequences of frames instead of one frame at a time; and it 
avoids the need to model a speaker with mixtures of Gaussians 
by scoring the data non-parametrically. Although at an early 
stage in its development, SNP’s output can be interpolated with 
that of our GMM system to outperform state-of-the-art GMM’s. 
Comparative results are presented for the 1998 NIST Speaker 
Recognition Evaluation test set. 

1. INTRODUCTION 

The most popular algorithm for speaker recognition systems is 
the Gaussian Mixture Model (GMM). It is fast, relatively 
simple, and offers good performance. Its simplicity, however, 
means that it ignores useful linguistic information that should 
allow one to improve recognition performance. 

Dragon Systems believes that using Large Vocabulary 
Continuous Speech Recognition (LVCSR) is one way to develop 
future algorithms that can outperform the GMM approach. We 
have discussed this approach in several places (e.g. [I]); in 
particular, we presented an LVCSR-based system in [2]. We 
have been able to improve the performance of this system to the 
point that it yields comparable performance to a GMM system 
when there is enough training and test data. We begin by briefly 
describing these improvements in section 2. 

We will then discuss a second approach to using speech 
recognition. This new algorithm, the Sequential Non-Parametric 
system (SNP), abandons the use of parametric speaker models 
and instead relies on non-parametric comparisons between the 
training and test speech data. 

Dragon Systems is not the first to use a non-parametric approach 
to speaker recognition (see, for example, [3] and [4]). The novel 
feature of SNP is its use of sequential information at the frame 
level. We close by discussing a series of experiments exploring 
the relevance of this information to system performance. 

2. GMM AND LVCSR IMPROVEMENTS 

At ICSLP in 1996, we presented early results (too late to be 
included in the proceedings) comparing our LVCSR speaker 
identification system (LVCSR) with one using a Gaussian 
Mixture Model (GMM). At the time, our GMM was far superior 
to our LVCSR, but in the last two years, we have made 
significant improvements to both, and especially to the LVCSR, 

so that the gap in performance has almost disappeared for 
sufficiently long test utterances. 

In our LVCSR system, we use a somewhat simplified version 01 
our standard speech recognizer to transcribe the speech data and 
then time-align the speech to these (errorful) transcripts. These 
time-alignments arc then scored with speaker-adapted 
monophone models. (See [2] for details.) 

Our GMM was modeled after the system designed by Doug 
Reynolds (described in [S]), to allow us to study the differences 
between the two systems in as controlled a manner as possible. 
For example, the signal-processing and adaptation algorithms 
were the same for the two systems. 

We have since made three major changes, each of which 
improves the performance considerably. The effect of these 
changes is illustrated here on a subset of the 1996 NIST Speaker 
Recognition database. 
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Figure 1: Gain from HNORM (GMM) (matched and 
mismatched handsets). 

First, we implemented an algorithm for normalizing the scores 
from different speakers, to allow pooling of scores before a 
decision threshold is applied. The simpler version of this 
(commonly referred to as ZNORM) uses a set-aside corpus of 
development (impostor) data to compute for each target speaker 
the mean and variance of non-target test utterances. Given the 
score of a test utterance against a particular target, we normalize 
the score by subtracting the mean, and dividing by the standard 
deviation. A more sophisticated version of this algorithm 
(HNORM) was developed by Reynolds [5], where he showed 
how to take advantage of side-knowledge of the handset type, by 
computing separate normalizations for carbon and clectret 



handsets. At test time, a handset detector is used to determine 
which nornialization should be applied to a given test utterance. 
Subsequently, scores are pooled in the usual fashion. 

In figure I, we show the effect of HNORM vs. ZNORM on our 
GMM for both matched (training and test data come from the 
same handset type) and mismatched test data. We see that 
matched test data (the lower two lines) are essentially 
unchanged, but HNORM helps considerably on mismatched test 
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Figure 2: Effect of parameter set (GMM) (matched and 
mismatched handsets). 

Next, we changed our signal-processing feature set to keep all 
I9 cepstral coefficients plus first differences (for a total of 38), 
instead of our conventional recognition parameter set of the first 
12 each of cepstrals, first, and second differences, plus 8 
spectrals (for a total of 44). The results are shown in figure 2. 
This was a clear improvement on the mismatched data. We had 
tried this before, but we did not see any improvement until we 
implemented HNORM. We speculate that the gross errors 
arising from the lack of handset normalization masked the 
improvement from the better signal processing. 
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Figure 3: Number of components in each state (LVCSR) 
(matched and mismatched handsets). 

These two changes helped our LVCSR and GMM systems 
equally. Fcr the LVCSR, we got an ad$tional substantial gain 
from increasing the number of Gaussians in each mixture. We 
had previously used 16 Gaussians for each state of each 
phoneme, for a total of about 1900 Gaussians, which was about 
the same size as the GMM. However, it turns out that 
performance increases dramatically with number of Gaussians, 
saturating at around 128 per mixture. This change is shown in 
figure 3, and by itself is enough to narrow the gap between the 
two systems so that for the 30-second test condition, it has 
almost disappeared. For shorter test utterances, the GMM is still 
clearly ahead, which we speculate is due to the higher word 
error rate on the short utterances. (Of course, this raises the 
intriguing possibility that the LVCSR might win for longer test 
utterances, or if the word error rate were lower.) 

3. THE SNP ALGORITHM 

3.1 Motivation 

Our development of the SNP algorithm was motivated by two 
ideas. The first is that the way a person’s speech traverses 
acoustic space carries additional information about his or her 
identity. A GMM system is unable to utilize this information 
since it scores each speech frame independently of all others. 
Our LVCSR system implicitly uses some of this sequential 
information since it scores time-alignments produced by a word- 
level recognizer. However, any HMM-based system has some 
smallest unit below which it assumes frame independence. 

Our second motivating idea was that Gaussian mixture models 
might be too coarse for encoding a speaker’s speech. This led 
us to consider a non-parametric method of comparing speech 
segments. 

3.2 Phoneme-level labels for data 

We begin by using the same transcription and time-alignments 
as in our LVCSR speaker recognition system. These time- 
alignments are highly errorful since they are based on 
recognition transcripts produced by a recognizer with a WER of 
nearly 50%. 

The time-alignments allow us, in principle, to compare 
sequences at many levels. We could, for example, compare 
words instead of phonemes. Our actual choice of phoneme-level 
comparisons was driven by two considerations: we wanted a 
unit small enough that many comparisons could be made 
between two speakers, but with enough frames to capture the 
sequential information we wanted to use. Phonemes are a 
reasonable compromise that satisfies both constraints. We call 
the resulting units into which the speech stream is partitioned 
“tokens”. 

3.3 Comparing a target and test speaker 

The heart of the SNP algorithm is the comparison of speech 
tokens. When we compare two tokens, we use a standard 
dynamic programming algorithm to find the best alignment 
between them, using the Euclidean metric to calculate the 
distance between frames. 



A comparison between a target and test speaker begins by 
scoring eat% test phoneme token against all target training 
tokens that belong to the same phoneme. For each test token, 
we keep only the best match with all the corresponding target 
tokens. 

We now have a score for each token present in the test data. We 
expect some of these matching scores to be unsatisfactory for a 
variety of reasons: mislabeling of tokens, small number of 
comparison tokens for rare phonemes, etc. Thus, for robustness, 
we keep only a percentage of the best scores (7.5% in our current 
implementation). The selection is made fair by normalizing 
each token score by its duration length. Finally, we assign a 
single score to a test-target comparison by summing the 
unnormalized scores from the selected tokens and dividing by 
their total number of frames. 

3.4 Normalizing the scores 

The raw score between a target and test speaker is not enough to 
obtain good performance. It is well known that the scores need 
to be normalized to take into account such factors as channel 
and speaker variations. 

The first normalization corrects for the variability of the test 
pieces. This is done in our GMM and LVCSR systems by 
subtracting from the score of each target-test piece the 
equivalent score that the test piece receives when compared to a 
background model. Since we have no such model in this 
algorithm, we correct for test variability by scoring the test 
pieces against a set of cohorts, subtracting from each target-test 
raw score the average cohort score for that test piece. Finally, 
we apply ZNORM to the resulting target scores. 

4. COMPARISON OF SYSTEMS 

We tested all three speaker recognition systems on the 1998 
NIST Speaker Recognition Evaluation test set. The task consists 
of the recognition of 2.50 females and 250 males under a variety 
of training and test conditions. All data is drawn from the 
Switchboard-II collection of telephone conversations [6]. 

There are three training conditions: IS, 2S, and 2F. The “one- 
session” (1 S) condition consists of two minutes of speech taken 
from a single conversation. The “two-session” (2s) condition 
uses one minute from the 1 S condition and an additional minute 
from a different conversation from the same telephone number. 
Finally, the “two-session-full” (2F) condition uses all available 
data from the same sessions, bringing up the training data for 
this condition to a nominal 5 minutes. The test data consists of 
3-, lo- and 30-second pieces, with 2,500 pieces for each 
duration. Test impostors were taken from the 1997 NIST 
Speaker Recognition Evaluation test set. The cohort speakers 
necessary to carry out the SNP algorithm were also taken from 
the 1997 database. 

At this early stage of its development, the SNP algorithm is 
inferior to both the GMM and LVCSR systems for each of the 
nine possible train/test pairs. Figure 4 shows the results for the 
2F training condition tested with the 3-second pieces (upper set 
of curves) and the 30-second pieces (lower set of curves). 

SNP. however, can be profitably used by interpolating it with 
the GMM%ystem (see figure 5). We saw a comparable 
improvement from GMM-SNP interpolation on our 1997 
development set. In contrast, we saw no benefit from 
interpolating GMM and LVCSR on both the 1996 and 1997 
NIST Evaluation sets and a modest improvement in our 1997 
development set. However, GMM-LVCSR interpolation came 
close to GMM-SNP interpolation on the 1998 Evaluation set. 
We believe that the GMM-SNP system offers state-of-the-art 
performance for all but the smallest test pieces. 
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Figure 4: System comparison for the 2F training condition on 3- 
and 30-second test pieces (upper set: 3-second, lower set: 30- 
second). 
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Figure 5: Interpolation of GMM and SNP for 2F/30-second. 

5. FURTHER EXPLORATIONS OF SNP 

Generally, non-parametric approaches have focused on 
individual frames and have neglected sequential information. 
Since the belief that this information is useful motivated us to 
develop SNP, we wanted to test our hypothesis. 



One obvious way to test how important sequences are to the 
algorithm iFto eliminate them. Instead of comparing sequences, 
we can compare individual frames. Each test frame receives a 
score corresponding to its distance to the closest frame in the 
target’s training data. The resulting scores are then normalized 
exactly as in the SNP algorithm. This frame-by-frame scoring 
can be carried out in two ways to provide further insight into the 
workings of SNP. We can restrict the comparison of a test 
frame to target frames belonging to the same phoneme (same- 
phoneme scoring) or score a test frame against all target frames 
irrespective of phonemic label (all-frame scoring). 

We compared these two scoring methods for the 1s training 
condition on the 3-, IO-, and 30-second test pieces using the 
female half of our 1997 NIST Speaker Recognition development 
set. The results show SNP lagging behind both frame scoring 
schemes for the smaller test pieces, but beginning to overtake 
them for the 30-second pieces (figure 6: upper set shows the 3- 
second result, middle set the IO-second result, and lower set the 
30-second result). 
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Figure 6: SNP compared to individual frame scoring methods 
(upper set: 3-second, middle set: lo-second, and lower set: 30- 
second). 

One way to understand these results is to hypothesize that the 
advantage of sequential information is masked in the smaller test 
pieces because of a greater error rate in their time-alignments; 
i.e. segment boundaries and labels are more likely to be 
misleading. This is consistent with our observation on GMM vs. 
LVCSR performance at the end of section 2. In addition, this 
hypothesis would explain the difference between all-frame and 
same-phoneme scoring in the smaller test pieces. We ran a 
preliminary test of the hypothesis on the 3-second test pieces by 
retaining the integrity of test phoneme sequences but allowing 
them to match against any equal-sized sequence in the training 
data (“slide” scoring). The result (figure 7) already shows an 
improvement over SNP even though we did not use dynamic 
programming, which we consider to be an essential part of 
sequence matching. Clearly, there remains much work to do in 
realizing the full potential of the SNP approach. 
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Figure 7: SNP versus “slide” scoring. 

6. CONCLUSIONS 

Our LVCSR system is now competitive with a GMM system 
when there is sufficient data. In addition, we presented a new 
algorithm that uses a non-parametric method to compare 
sequences of frames (SNP). This new system is still under 
development, but already allows us to outperform standard 
GMM systems when interpolated with them. 
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