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ABSTRACT

We present a new algorithm for speaker recognition (the
Sequential Non-Parametric system, or SNP) that has the
potential to overcome two limitations of the current approaches.
It uses sequences of frames instead of one frame at a time; and it
avoids the need to model a speaker with mixtures of Gaussians
by scoring the data non-parametrically. Although at an early
stage in its development, SNP's output can be interpolated with
that of our GMM system to outperform state-of-the-art GMM’s.
Comparative results are presented for the 1998 NIST Speaker
Recognition Evaluation test set.

1. INTRODUCTION

The most popular algorithm for speaker recognition systems is
the Gaussian Mixture Model (GMM). It is fast, relatively
simple, and offers good performance. Its simplicity, however,
means that it ignores useful linguistic information that should
allow one to improve recognition performance.

Dragon Systems believes that using Large Vocabulary
Continuous Speech Recognition (LVCSR) is one way to develop
future algorithms that can outperform the GMM approach. We
have discussed this approach in several places (e.g. [1]); in
particular, we presented an LVCSR-based system in [2]. We
have been able to improve the performance of this system to the
point that it yields comparable performance to a GMM system
when there is enough training and test data. We begin by briefly
describing these improvements in section 2.

We will then discuss a second approach to using speech
recognition. This new algorithm, the Sequential Non-Parametric
system (SNP), abandons the use of parametric speaker models
and instead relies on non-parametric comparisons between the
training and test speech data.

Dragon Systems is not the first to use a non-parametric approach
to speaker recognition (see, for example, [3] and [4]). The novel
feature of SNP is its use of sequential information at the frame
level. We close by discussing a series of experiments exploring
the relevance of this information to system performance.

2. GMM AND LVCSR IMPROVEMENTS

At ICSLP in 1996, we presented carly results (too late to be
included in the proceedings) comparing our LVCSR speaker
identification system (LVCSR) with one using a Gaussian
Mixture Model (GMM). At the time, our GMM was far superior
to our LVCSR, but in the last two years, we have made
significant improvements to both, and especially to the LVCSR,

so that the gap in performance has almost disappeared for
sufficiently long test utterances.

In our LVCSR system, we use a somewhat simplified version of
our standard speech recognizer to transcribe the speech data and
then time-align the speech to these (errorful) transcripts. These
time-alignments are then scored with speaker-adapted
monophone models. (See [2] for details.)

Our GMM was modeled after the system designed by Doug
Reynolds (described in [5]), to allow us to study the differences
between the two systems in as controlled a manner as possible.
For example, the signal-processing and adaptation algorithms
were the same for the two systems.

We have sincc made three major changes, each of which
improves the performance considerably. The effect of these
changes is illustrated here on a subset of the 1996 NIST Speaker
Recognition database.
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Figure 1: Gain from HNORM (GMM) (matched and

mismatched handsets).

First, we implemented an algorithm for normalizing the scores
from different speakers, to allow pooling of scores before a
decision threshold is applied. The simpler version of this
(commonly referred to as ZNORM) uses a set-aside corpus of
development (impostor) data to compute for each target speaker
the mean and variance of non-target test utterances. Given the
score of a test utterance against a particular target, we normalize
the score by subtracting the mean, and dividing by the standard
deviation. A more sophisticated version of this algorithm
(HNORM) was developed by Reynolds {5], where he showed
how to take advantage of side-knowledge of the handset type, by
computing separate normalizations for carbon and clectret



handsets. At test time, a handset detector is used to determine
which normalization should be applied to a given test utterance.
Subsequently, scores are pooled in the usual fashion.

In figure 1, we show the effect of HNORM vs., ZNORM on our
GMM for both matched (training and test data come from the
same handset type) and mismatched test data. We see that
matched test data (the lower two lines) are essentially
unchanged, but HNORM helps considerably on mismatched test
utterances.
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Figure 2: Effect of parameter set (GMM) (matched and
mismatched handsets).

Next, we changed our signal-processing feature set to keep all
19 cepstral coefficients plus first differences (for a total of 38),
instead of our conventional recognition parameter set of the first
12 each of cepstrals, first, and second differences, plus 8
spectrals (for a total of 44). The results are shown in figure 2.
This was a clear improvement on the mismatched data. We had
tried this before, but we did not see any improvement until we
implemented HNORM, We speculate that the gross errors
arising from the lack of handset normalization masked the
improvement from the better signal processing.
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Figure 3: Number of components in each statc (LVCSR)
(matched and mismatched handsets).

These two changes helped our LVCSR and GMM systems
equally. For the LVCSR, we got an additional substantial gain
from increasing the number of Gaussians in each mixture. We
had previously used 16 Gaussians for each state of each
phoneme, for a total of about 1900 Gaussians, which was about
the same size as the GMM. However, it turns out that
performance increases dramatically with number of Gaussians,
saturating at around 128 per mixture. This change is shown in
figure 3, and by itself is enough to narrow the gap between the
two systems so that for the 30-second test condition, it has
almost disappeared. For shorter test utterances, the GMM is still
clearly ahead, which we speculate is due to the higher word
error rate on the short utterances. (Of course, this raises the
intriguing possibility that the LVCSR might win for longer test
utterances, or if the word error rate were lower.)

3. THE SNP ALGORITHM

3.1 Motivation

Our development of the SNP algorithm was motivated by two
ideas. The first is that the way a person’s speech traverses
acoustic space carries additional information about his or her
identity. A GMM system is unable to utilize this information
since it scores each speech frame independently of all others.
Our LVCSR system implicitly uses some of this sequential
information since it scores time-alignments produced by a word-
level recognizer. However, any HMM-based system has some
smallest unit below which it assumes frame independence.

Our second motivating idea was that Gaussian mixture models
might be too coarse for encoding a speaker’s speech. This led
us to consider a non-parametric method of comparing speech
segments.

3.2 Phoneme-level labels for data

We begin by using thc same transcription and time-alignments
as in our LVCSR speaker recognition system. These time-
alignments are highly errorful since they are based on
recognition transcripts produced by a recognizer with a WER of
nearly 50%.

The time-alignments allow us, in principle, to compare
sequences at many levels. We could, for example, compare
words instead of phonemes. Our actual choice of phoneme-level
comparisons was driven by two considerations: we wanted a
unit small enough that many comparisons could be made
between two speakers, but with enough frames to capture the
sequential information we wanted to use. Phonemes are a
reasonable compromise that satisfies both constraints. We call
the resulting units into which the speech stream is partitioned
“tokens”.

3.3 Comparing a target and test speaker

The heart of the SNP algorithm is the comparison of speech
tokens. When we compare two tokens, we use a standard
dynamic programming algorithm to find the best alignment
between them, using the Euclidean metric to calculate the
distance between frames.



A comparison between a target and test speaker begins by
scoring each test phoneme token against all target training
tokens that belong to the same phoneme. For each test token,
we keep only the best match with all the corresponding target
tokens.

We now have a score for each token present in the test data. We
expect some of these matching scores to be unsatisfactory for a
varicty of reasons: mislabeling of tokens, small number of
comparison tokens for rare phonemes, etc. Thus, for robustness,
we keep only a percentage of the best scores (75% in our current
implementation). The selection is made fair by normalizing
each token score by its duration length. Finally, we assign a
single score to a test-target comparison by summing the
unnormalized scores from the selected tokens and dividing by
their total number of frames.

3.4 Normalizing the scores

The raw score between a target and test speaker is not enough to
obtain good performance. It is well known that the scores need
to be normalized to take into account such factors as channel
and speaker variations.

The first normalization corrects for the variability of the test
pieces. This is done in our GMM and LVCSR systems by
subtracting from the score of each target-test piece the
equivalent score that the test piece receives when compared to a
background model. Since we have no such model in this
algorithm, we correct for test variability by scoring the test
pieces against a set of cohorts, subtracting from each target-test
raw score the average cohort score for that test piece. Finally,
we apply ZNORM to the resulting target scores.

4. COMPARISON OF SYSTEMS

We tested all three speaker recognition systems on the 1998
NIST Speaker Recognition Evaluation test set. The task consists
of the recognition of 250 females and 250 males under a variety
of training and test conditions. All data is drawn from the
Switchboard-II collection of telephone conversations [6].

There are three training conditions: 1S, 2S, and 2F. The “one-
session” (1S) condition consists of two minutes of speech taken
from a single conversation. The “two-session” (2S) condition
uses one minute from the 1S condition and an additional minute
from a different conversation from the same telephone number.
Finally, the “two-session-full” (2F) condition uses all available
data from the same sessions, bringing up the training data for
this condition to a nominal 5 minutes. The test data consists of
3-, 10- and 30-second pieces, with 2,500 pieces for each
duration. Test impostors were taken from the 1997 NIST
Speaker Recognition Evaluation test set. The cohort speakers
necessary to carry out the SNP algorithm were also taken from
the 1997 database.

At this early stage of its development, the SNP algorithm is
inferior to both the GMM and LVCSR systems for each of the
nine possible train/test pairs. Figure 4 shows the results for the
2F training condition tested with the 3-second pieces (upper set
of curves) and the 30-second pieces (lower set of curves).

SNP, however, can be profitably used by interpolating it with
the GMM “system (see figure 5). We saw a comparable
improvement from GMM-SNP interpolation on our 1997
development set. In contrast, we saw no benefit from
interpolating GMM and LVCSR on both the 1996 and 1997
NIST Evaluation sets and a modest improvement in our 1997
development set. However, GMM-LVCSR interpolation came
close to GMM-SNP interpolation on the 1998 Evaluation set.
We believe that the GMM-SNP system offers state-of-the-art
performance for all but the smallest test pieces.
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Figure 4: System comparison for the 2F training condition on 3-
and 30-second test pieces (upper set; 3-second, lower set: 30-
second).
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Figure 5: Interpolation of GMM and SNP for 2F/30-second.
5. FURTHER EXPLORATIONS OF SNP

Generally, non-parametric approaches have focused on
individual frames and have neglected sequential information.
Since the belief that this information is useful motivated us to
develop SNP, we wanted to test our hypothesis.



One obvious way to test how important sequences are to the
algorithm i5 to eliminate them. Instead of comparing sequences,
we can compare individual frames. Each test frame receives a
score corresponding to its distance to the closest frame in the
target’s training data. The resulting scores are then normalized
cxactly as in the SNP algorithm. This frame-by-frame scoring
can be carried out in two ways to provide further insight into the
workings of SNP. We can restrict the comparison of a test
frame to target frames belonging to the same phoneme (same-
phoneme scoring) or score a test frame against all target frames
irrespective of phonemic label (all-frame scoring).

We compared these two scoring methods for the 1S training
condition on the 3-, 10-, and 30-second test pieces using the
female half of our 1997 NIST Speaker Recognition development
set. The results show SNP lagging behind both frame scoring
schemes for the smaller test pieces, but beginning to overtake
them for the 30-second pieces (figure 6: upper set shows the 3-
second result, middle set the 10-second result, and lower set the
30-second result).
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Figure 6: SNP compared to individual frame scoring methods
(upper set: 3-second, middle set: 10-second, and lower set: 30-
second).

One way to understand these results is to hypothesize that the
advantage of sequential information is masked in the smaller test
pieces because of a greater error rate in their time-alignments;
i.e. segment boundaries and labels are more likely to be
misleading. This is consistent with our observation on GMM vs,
LVCSR performance at the end of section 2. In addition, this
hypothesis would explain the difference between all-frame and
same-phoneme scoring in the smaller test pieces. We ran a
preliminary test of the hypothesis on the 3-second test pieces by
retaining the integrity of test phoneme sequences but allowing
them to match against any equal-sized sequence in the training
data (“slide” scoring). The result (figure 7) already shows an
improvement over SNP even though we did not use dynamic
programming, which we consider to be an essential part of
sequence matching. Clearly, there remains much work to do in
realizing the full potential of the SNP approach.
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Figure 7: SNP versus “slide” scoring.

6. CONCLUSIONS

Our LVCSR system is now competitive with a GMM system
when there is sufficient data. In addition, we presented a new
algorithm that uses a non-parametric method to compare
sequences of frames (SNP). This new system is still under
development, but already allows us to outperform standard
GMM systems when interpolated with them.
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