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Abstract

This paper investigates how to improve the acoustic modelling
of non-native speech. For this purpose we present an adaptation
technique to combine hidden Markov models of the source and
the target language of a foreign language student. Such model
combination requires a mapping of the mean vectors from tar-
get to source language. Therefore, three different mapping ap-
proaches, based on either phonetic knowledge and/or acoustical
distance measures have been tested. The performance of this
model combination method and several variations of it has been
measured and compared with standard MLLLR adaptation. For the
baseline model combination small improvements of recognition
accuracy compared to the results based on applying MLLLR were
obtained. Furthermore, slight improvements were found when us-
ing an a-priori approach, where the models were combined with
predefined weights before applying any of the adaptation tech-
niques.

1. Introduction

Current speaker independent recognition system are known to
perform considerably worse when recognising non-native speech.
Chase showed that such performance deterioration is due to bad
acoustic modelling, [3]. Similarly, initial investigations about
recognition characteristics of non-native speech made by Byrne
et al.,[2] demonstrated the need to improve the modelling of non-
native speech. In this paper we present a technique to adapt
to non-native speech which deploys the additional information,
which is given if the kind of accent, i.e. the mother-tongue of the
speaker is known. This technique is based on linearly combining
each mean vector of a model from the target language with the
mean vectors of a model of the source language. The combina-
tion weights can be estimated by applying re-estimation formulas
similar to those used in the MLLR adaptation algorithm, [5].

Unlike other adaptation schemes which are based on a matrix
transformation from a speaker independent system to the accent
specific acoustic space, the approach presented here constrains
the search to the space between the model sets of the two lan-
guages involved. Incorporating information from both languages
is hoped to provide more direction in the acoustic space towards
the location of better models for non-native speech and poten-
tially allow faster adaptation on small amounts of data.

This work represents parts of an ongoing project to investigate
the use of automatic speech recognition in computer assisted lan-
guage learning (CALL), [6]. The techniques to score pronunci-
ation which have been developed so far within this project, have
been based on the assessment of the pronunciation of read speech
by a student. In a next step it is desired to recognise a student’s
speech as spoken in a dialog with the computer. In such a setup
it is necessary to model non-native speech. Compared with na-
tive speech, non-native speech is characterised by different spec-
tral characteristics especially in the higher formants, see also [1].
By modifying speaker independent models of the target language
with components of the source language, it is hoped to account
for these spectral differences.

One of the additional characteristics of the corpus of non-native
speech spoken by students of English used for the experiments
presented here is that the students speak haltingly. They also
make pronunciation errors (about 20% of transcriptions has been
error marked by phoneticians) and the speech rate is on average
reduced by a factor of 1.2.

In the next section the theoretical framework of the bilingual
adaptation algorithm will be derived. Additionally, two modifica-
tions of the basic adaptation approach will be presented as well.
This section is followed by a discussion of three different map-
ping approaches between the source and target language will be
discussed. In section 4 the experimental results will be presented.

2. Derivation of Linear Model Combination

Let Mt be a model set of the target language containing Qr
models, and Mg a model set of the source language with Qg
models. Assume a continuous density multiple mixture HMM
with IV states, transition probabilities a;;, where the output prob-
ability of the ith state, b; for a speech frame vector o is given
as
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with the output probability of each mixture component given as

bir(0) = !

— - . —L(o—pirn) C (o—pix) 2)
(@m)F | Cu |3

where p;;, denotes the mean of mixture component k (vector of



length n), wyx the mixture weight and C;y, the n X n covariance
matrix.

2.1. Single Mixture Gaussians

Firstly, the re-estimation expressions will be derived for the case
of single mixture HMMs. Assume a mapping of each target mean
to a source mean. Then a new mean can be estimated as

tis = Bs(us, — pr,) + p, 3

where B is defined as a diagonal matrix for state s in order to
map from target mean pz, to source mean pg,. Thus, the jth
diagonal element b,,; represents a linear combination weight for
the respective source and target mean vector elements. The pa-
rameters of any linear model space transformation can be found
through application of the EM algorithm. The method presented
here represents a modification of the MLLR adaptation algorithm,
see [5]. The auxiliary function which has to be minimised can be
written as

QN ) =D F(0,01\)log(F(0,6]|3)) )

0co
where A denotes the current set of model parameters and X a re-
estimated set of parameters. The likelihood of generating the ob-
served speech frames in the state sequence 8 is
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To estimate the matrix Bs, it is necessary fo differentiate Q(, X)
with respect to B¢ using equation 3 and equate it to zero:
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Solving this derivative for the j-th element of B yields (index j
indicates a vector component):
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where 7, () the probability of state occupancy at time ¢.

2.2. Tying of Model Means into Regression
Classes

Given the problem of data sparseness, it is desirable to extend the
above derivation to the case of tied combination matrices.

If a B, matrix is shared by R states {s1, s2...sr} the solution
for b; becomes
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The above derivation of the estimation of the combination matrix
can be extended to the case of multiple mixtures in a straightfor-
ward way, as they can be pictured as multiple weighted states.
For an equivalent derivation see [5]. All that changes in equation
(8) are the indices.
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2.3. Bilingual Model Alignment

Similar to MLLR, this model combination technique requires
alignment of the transcriptions of the adaptation sentences with
the speech data. An approach to improve modelling of non-native
speech could be to include the model set of the speaker’s mother
tongue in the alignment stage. Using a mapping from each tar-
get model to one source model, a recognition network was built
consisting of a sequence of target models according to the tran-
scriptions. The mapping source model was put in parallel with
its respective target model. Thus, transcriptions consisting of
phonemes of both languages were calculated and used for the re-
estimation process.

In the case that a phoneme from the source language is given in
the transcriptions, the re-estimated mean is defined as:

s = (I = Bs){pr, — ps,) + ps. )
otherwise the old definition remains:

fs = Bs(us, — pr,) + pir, (10)

Thus, for part of the training data the new mean is estimated based
on accumulated statistics for the initial target mean, and for the
other part of data, the new mean is estimated starting out from the
source mean. Define T as the number of frames associated with
state s using the British model, and T% the number of frames us-
ing the Spanish model. With this approach the auxiliary function
rewrites as
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Solving for b,,; yields
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2.4. A-priori Combination

From Figure 2 it is apparent that an increase in the number of
adaptation sentences does not significantly increase the recogni-
tion performance. One possible explanation is that inaccurate
modelling by the target models causes a large number of align-
ment errors which makes MLLR adaptation ineffective. Like
most maximum likelihood estimators, the ones discussed in this



paper have been shown to find local maxima, but not global ones.
Starting the estimation process at a different location might yield
different local optima and thus improved models. Therefore, we
propose a third model combination approach which combines
source and target models using a-priori weights before executing
re-estimation. For example, examination of the weights shown in
Figure 1 suggests that models with improved non-native mod-
elling are likely to have combination weights in the range of
0.0 -0.2.

3. Mapping from Target to Source Means

The model combination technique requires a mapping of each
target model mean vector with a mean vector of the source lan-
guage. This mapping can be based on acoustical distance mea-
sures and/or phonological knowledge. We experimented with
three different approaches

1. Mixture-level: For each target mean the source mean with
minimum Euclidean distance was found. This mapping is
based solely on acoustic distances and as such disregards
any connectivity between mixture means of a state and a
model.

2. State-level:: This mapping approach moves up to state level
and calculates the closest source state for each target state,
using the following state distance measure:
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The mixture component for each state were then mapped
using to Euclidean distances as in (1).

3. Model-level: In order to find out which source models are
likely to be substituted by non-native speakers for target
models, we compared the forced alignment results of the
target models with the alignments results of a phone-loop
with source models. For instance, let British English be the
target language and Spanish be the source language. Then
some examples of those phonemes which are likely to be
substituted are the Spanish 'b/v’ sound for both the English
b’ or 'v’ or the Spanish ’rr’ for the English r’. Each target
model was mapped to that source model which was most of-
ten aligned at the same time. Given this mapping on model
level, the states of the model pair where mapped in order,
ie. state 2 to state 2 etc, and the mixtures were mapped
using Euclidean distance as in (1).

4. [Experimental Results

For all experiments two sets of speaker independent multiple mix-
ture monophone HMMs have been used, one trained on British
English as the target language and one set trained on Latin-
American Spanish representing the source language. The models
were build with the HTK Toolkit ([7]) and the regression class
trees were built using the techniques described in [4].

In Figure 1 the weights for a global transformation of both one
native and two Spanish accented speakers are compared. The

Non—native 1
Non—native 2
Native

nth feature

Figure 1: Comparison of model combination weights for non-
native and native speakers

weights for the native speaker are distributed around 0.0 and gen-
erally are smaller in magnitude than the weights of the non-native
speakers. This indicates that an improved HMM for foreign ac-
cented speech might be found through the combination of models
from the source and the target language. Likewise, the model
combination approach might have little impact on improving the
modelling of a native speaker, since the weight will not change
much of the original models.

In the following experiments recognition accuracy has been mea-
sured using a system with a word-pair grammar. This grammar
was based on the stories in simplified English used for the record-
ing of a non-native database. This data was taken from a specif-
ically recorded database of non-native speech of students of En-
glish as a foreign language, [6]. Each recognition test contained
90 sentences per speaker.

In Figure 2 the recognition performance for baseline, MLLR and
model combination with all three mapping types is shown as a
function of the number of adaptation sentences. Both the fact
that the performance does not increase with more adaptation sen-
tences and that adapted models can perform worse than the base-
line indicate how different the non-native data are to the native
target. Because recognition results did not increase significantly
with increased adaptation data, the number of adaptation sen-
tences has been limited to 5. Furthermore, this represents a rea-
sonable number of adaptation sentences to ask for from a user of
a CALL system.

Recognition performance for MLLR and the model combination
technique with all three different mappings can be seen in Table 1.
For all speakers the model combination technique yields a max-
imum improvement of 5% over the baseline performance and of
3.4% for MLLR. Comparing the different mapping techniques it
can be seen that the model-level mapping, which is based on the
error knowledge of a student, yields the best results. For the state-
and mixture level mapping the performance is similar to MLLR.
These results indicate that incorporating knowledge about typical
pronunciation mistakes can help to improve non-native recogni-
tion. For the bilingual approach the results are better than MLLR
and two of the mappings, but worse than the model-based map-
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Figure 2: Phone Recognition results for MLLR and Model Com-
bination as a function of adaptation sentences

Spkr | Base | MLLR | MC1 | MC2 | MC3 | MC-Bi
FL 65.93 | 66.33 70.54 | 66.53 | 67.40 | 70.01
PC 57.12 | 58.87 60.06 | 58.37 | 59.44 | 58.93
TS 64.10 | 64.49 65.50 | 65.18 | 64.04 | 65.69

[ aver. | 6238 | 63.23 [ 6537 | 6329 | 63.63 | 6445 ||

Table 1: Recognition Accuracy for different mapping approaches
(MC1: Model-level mapping, MC2:State-level, MC3:Mixture-
level, MC-Bi:Bilingual Alignment (with regression tree)), 5 adap-
tation sentences

The last experiment uses a-priori combined models. When choos-
ing the a-priori weights, the following aspects were taken into
account. Firstly, the combination weights for non-native speak-
ers tend to be in the interval [0, 0.2], thus it was decided to use
weights b; = 0.1. Secondly, since foreign accent especially
causes changes in the second and higher formats of accented
speech, the first 6 weights, which represent the six lowest mel-
frequency cepstral coefficients, have been set to zero. The results
are shown in Table 2. The choice of weights used in this setup
represent an educated guess. It will need further experiments to
determined optimal values. However, with this approach the re-
sults for MLLR can be improved without any additional compu-
tational loads, since the combination can be done off-line.

5. Conclusions

A technique for combining speaker independent models of the
target and source language for non-native accents has been pre-
sented. In these preliminary experiments, the basic technique of
model combination yield slight recognition improvement over the
standard MLLR adaptation technique. Also, some improvement

Speaker | Baseline | A-priori | MLLR | A-priori MLLR
FL 65.93 66.33 66.07 70.74
PC 57.12 58.43 59.31 58.37
TS 64.10 67.74 65.57 64.68
aver. 62.38 63.17 63.65 64.40

Table 2: Recognition accuracy for baseline, a-priori baseline,
MLLR, a-priori based MLLLR and a-priori model combination
(model-level), 5 adaptation sentences

has been obtained by using a-priori combined models. In this
case the same recognition performance as with MLLR could be
obtained by using off-line combined models. This means MLLR
equivalent can be achieved without adaptation data if the type of
accent is known.

Further experiments will be needed to explore this type of accent
adaptation more thoroughly. Future work will use cross-word
triphone models instead of monophone models in order to im-
prove the alignment accuracy. Finally, investigations are neces-
sary on the integration of the adaptation technique presented here
in computer-assisted language learning systems.
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