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ABSTRACT 

We have already developed time-varying complex AR (TV- 
CAR) paramet.er estimation based on minimizing mean 
square error (MMSE) for analyt,ic speech signal. hlt.hough 
the MMSE approach is commonly and successfully ap- 
plied in various parameter est,imation such as conventional 
LPC, it is well-known that an MMSE method easily suf- 
fers from biased and inaccurate spectrum estimation due 
to non-Gaussian nat.ure of glottal excitation for voiced 
speech in the context of speech analysis. This paper offers 
robust parameter estimation algorithm for t.hc TV-CAR 
mode1 by applying Huber’s robust M-estimation approach 
and two kinds of robust algorithms are derived: Newton- 
type algorithm and weighted least squares (WLS) algo- 
rithm. The preliminary experiments with synthetic signal 
generated by glottal source model excitation and natural 
speech uttered by female speaker demonstrate that the 
time-varying complex AR. method is sufficiently robust 
against non-Gaussian nature of glottal source excitation 
owing t.o the improved resolution in thr frequency domain. 

1. INTRODUCTION 

LPC methods[l][2] have been successfully utilized in 
a broad range of speech processing. The LP(: meth- 
ods, however, can not extract time-varying features from 
speech signal since observed speech signal is assumed as 
st.ationary within the analysis interval. On the other 
hand, several complex LPC methods for an analytic sig- 
nal have already been proposed[3][4]. Analytic signal is 
a complex-valued signal whose real part is an observed 
signal and whose imaginary one is ii Hilbert transforrna- 
tion of the observed signal. Since analytic signals pro- 
vide the spectrum only in the positivo frequency domain 
(0, x/2), analytic signals can be decimated by a factor t,wo. 
Consequently, these methods applying for analytic signal 
take some advantages over conventional real-valued LPC 
methods, i.e.. more accurate spectral estimation, smaller 
computational amount. smaller errors in terms of com- 
putation with finite precision as well as quantixation of 
the coefficient,s, and so on. We have already proposed 
a non-recursive complex speech analysis based on min- 
imizing mean square error (MMSE) for analytic signal 
by int,roducing a time-varying complex AR (.I’\:-CAR) 
model in which the parameters are represented by corn- 
plex basis expansion[5]. In this method the complex AK 

coefficients can be efficiently estimated by solving linear 
equation by means of an extended version of LDU decom- 
position. The method can extract t,ime-varying features 
from speech signal with non-recursive processing based 
on MMSE approach. The MMSE is optimal providing 
that the underlying distribution is represented by Gaus- 
sian. However it is well known that the outliers make 

it difficult to est.imate accurate speech spectrum due t,o 
the non-Gaussian nature of glottal source excitation for 
voiced speech, especially in high-pit,ched speech. In order 
to realize robust estimation, Huber’s robust M-est.imation 
has been applied to LPC met,hod[6][7]. In the robust es- 
timation, the non-Gaussian nature of glottal excitation 
is assumed to be mixture distribution in which large por- 

tion of the excit.at.ions are from a normal distribution with 
a very small variance and a small portion of excitations 
are from an unknown distribution with a much bigger 
variancr[G]. This distribution is often called heavy-t.ailed 
non-Gaussian. In this paper, wc present the robust non- 
recursive speech analysis mct,hod based on the TV-CAR 
mode1 for analytic speech signal by introducing Huber’s 
robust M-estimation. 

This paper is organized as follows. In section 2. the 
time-varying complex AR (TV-CAR) model is explained 
briefly. In section 3, robust M-estimation algorithm for 
the TV-CAR model is then derived. In the section. t,wo 
robust M-estimation algorit,hms are derived: newton t,ype 
algorithm and weighted least squares (i%‘T,S) algorithm. 
In se&on 4, experiments with synthetic signal driven by 
glottal source model excitation and natural speech utt,ered 
by female speaker arc dcrnonstrated. 

2. TV-CAR MODEL 

Target signal of the time-varying complex AR (TV-CAR) 
method is an analytic signal [8] that is complex-valued 
signal defined by 

y”(l) = 
?/(2t) + 3YHt2i) 

fi 

where y’(1). y(t). and ye denote an analytic signal at 
time t. an observrd signal at time j. and a tlilbrrt. trans- 
formed signal for the observed signal y(t), rrspc:ct,ively. 
Since analytic signals hold t.he spectra only over the range 

(0. 7r/2), analytic: signals can be decimated by a fact,or 



two. The term of l/A is multiplied in order to adjust 
the power Lf an analytic signal. 

The introduced TV-CAR. model[5] is defined as fol- 
lows. 

L-l 

a:(t) = 
c 

!?,‘,ll-~(~) (2) 

1=0 

where HC(z-’ , t), n:(l), I . T. and f;‘(l) are taken to be a 
transfer function of the model, i-th complex AR coefficient 
at time t! AR order, finite order of complex basis expan- 
sion: and a complex-valued basis function. respectively. 
In the TV-CAR model, the complex AR coefficient is ex- 
pressed with the finite number of complex basis function 
such as complex Fourier basis ezp(-j2xlf/‘Z’) or first or- 
der polynomial (f:(t) = l.f;(t) = t): or so on. In [lj]? we 

have derived the MMSE solution for the TV-CAR model. 
which is complex-valued I,DU decomposition. Note that 
superscript c denotes complex value in this paper. 

3. ROBUST ALGORITHMS 

Huber’s robust M-estimation[6][7] is applied to the 
previously proposed TV-CAR method in order to real- 
ize robust. estimation. Huber’s robust M-estimation is 
defined as the minimization of t,hc sum of appropriately 
weighted prediction errors. The weight. is a function of 
the prediction errors and the weight function is selected 
so as to down-weight the outliers appropriately. 

EC = gp[$)] (4) 

I L-l 

ef(t) = y”(t) + 7; x s:;lP;‘(q?/‘(t - 4 (5) 

,=I l=O 

Q.(5) is the prediction error at time t for the fea- 
c ture vector gl,r. In Eq.(4): p[z] is called robust score 

function that cut,s off the outliers of the non-Gaussian 
signal and w is scale factor that makes t,he criterion scale- 
invariant. The following Huber’s score function is com- 
monly adopted as robust score function. 

/+I = 
Clxl - c2/2 (I4 2 a 
x2/2 (1x1 < C) (6) 

If p[x] is x2/2, t,his method is exactly equal to t.he 
MMSE-based TV-CAR method[5]. Hy taking the deriva- 
tive of the weighted criterion Eq.(4). we can ticrive the fol- 
lowing non-linear equation which requires iterative meth- 
ods to solve. 

where +[x] is the derivat.ivc of p[r]. 
There are two approaches to solve Eq.(7), viz. newton- 

type algorithm and weighted least squares (WI,S) algo- 
rithm. 

3.1 Newton-type algorithm 
_. 

1 1 
. _ ti e:( CL’ in Eq.(7) can be approximated by first order 

Taylor series expansion. 

= +$q+tiqq 

I L--l 

x cc 
Csl”,,l - iX:O.frC(W(~ - i)lfu (8) 

,=I I=0 

In.Eq.(ll). ~‘[r] denot,es the derivative of +[x] that 
is called influence function, and jr denotes a preliminary 
estimation of gzl 

Hy substituting Eq.(8) int.o Eq.(7). we can obtain the 
following equation. 

x f;:(l)f;(t)‘yc(t - i)yC(l - k)* 

(l<i,k<T,O<I,n<L) (9) 

The equat,ion is solved iteratively up to the enough 
convergence. 

3.2 WLS algorithm 

III Eq.(7), the following weighted function I+‘[21 is 
adopted. 

Hy substituting Eq.(lO) into b:q.(‘i) with approxima- 
tion, WC can obtain the following equation. 

dk,n) = y”(t)y’(t - k)‘fZ(f)’ 



Eq.( 11 
valued LD t 

can be solved with iteration by means of complex 
decomposition since the rIr(k, n, i. I) is an Her- 

mit matrix. 
In WLS algorithm, more effective robust score func- 

tion can be introduced, for example: Turkey’s biweight 
function as follows. 

4. EXPERIMENTS 
The experiments with synthetic signal driven by glot- 

tal source excitation and high-pitched natural speech were 
conducted. The testing synthetic signal is synthesized 
with time-varying ten order AR process /aiueoa/ by driv- 
ing a glottal source excitation. The glottal excitat,ion is 
generated by Rosenberg-Klatt model (RK-model)[l)] with 
the parameters (AV. OQ: 7’7,) = (200,0.75. IO) and pitch 
period 7’0 = 5[msec]. The reference spectrum of the AR 
process is shown in Fig.l(al). The AR paramet.ers of the 
synthetic signal are linearly interpolated with the corre 
sponding formant frequency and bandwidth between typ- 
ical all-pole spectra located at every 5O[msec] interval to 
generate a time-varying spectrum. Sampling rate of the 
synthetic signal is supposed to be lO[kHz]. The testing 
natural speech /ge/ is drawn in Fig.2(a2). The signal is 
lO[h”Hz] sampled speech that is converted from PO[KHz] 
sampled ATR. database data and its speaker is FKN. Ta- 
ble 1 shows analysis conditions. III Table 1, T and 5 
denote analysis width and shift length([msec]). In Table 
1, (b)-(g) means as follows. (b) is most popular auto- 
correlation LPC method. (c) is time-varying covariance 
LPC method that is real-valued version of the M h,lSE 
method[5]. (d) is robust estimation algorithm of(c). (e) is 
complex covariance LPC method. (f) is MXISE TV-CAR 
method[5]. (g) is proposed robust ‘I’V-(r/ZR method. In 
the robust methods (d) and (g). the robust estimation 
is realized by 3.2 WLS algorithm with Tukey’s biwright 
function, C = 1.5, and iteration number is 2. In the time- 
varying methods (c),(d),(f),(g). first order polynomial is 
adopted as basis function, i.e. J;‘(t) = t’/l. Note t,hat 
pre-emphasis operation is not introduced in any meth- 
ods. Analysis order is 14 for the real-valued methods and 
7 for the complex-valued methods. Moreover. (20.20) IIR 
filter [lo] is adopted to realize Hilbert transform. 

Fig.1 and Fig.2 show the estimat.ed spectra with syn- 
thetic signal and natural speech, respectively. In both 
figures, spectrum is drawn at every 2[msec]. (b) can 
only estimate one spectrum for one analysis frame. thus, 
the same spectrum is repeatedly drawn within the same 
analysis frame. Fig.1 and 2 demonstrate that robust es- 
timation is not so effective for complex-valued met,hod 
although robust real-valued met,hod can estimate less bi- 
ased and less valiance spectrum than non-robust one. The 
reason is that the resolution in the frequency domain on 
complex-valued method is improved twice than that OII 

real-valued one owing to the decimation with factor two. 
Furthermore, a basis function constrains the parameters 
to vary in time in the ‘I’V-CAR method. ‘I’hc constraint 
leads to less variance spectrum estimation. (:orisequently, 
the TV-CAR method is enough robust against the non- 
Gaussian nature of glottal source excitat,ion. 

(al ) Reference spectra /aiueoa/ 

cl 

(b) LPC(T = 20, S = 1 O.Hamming window) 

5 

(c) Time-varying covariance(T = 20, S = 10) 

5 

0 

(d) R.obust Time-varying( L = 2, T = 20, S = 10) 

5 

0 

(c) Complex covarianct:( I, = 1, T = 20. S = 10) 

5 

0 

(f) T\--CAR(L = 2, 7’ = 20. S = 10) 

5 

0 

(g) Robust TV-CAR(L = 2.7’ = ‘LO,.‘+ = 10) 
Fig. I I:xperimental results with high-pitch synthetic 
speech /aiueoa/ generated by RK-model c:xcit,ation 



Table 1 Analysis conditions 
Method 

Time-varying covariance 
~ 

5. CONCLUSIONS 

Robust M-estimation has been applied to the time- 
varying complex AR (TV-CAR) method, which can take 
into account the non-Gaussian nat,ure of glott,al source 
excitation. The preliminary experimental results with 
synthetic signal and natural speech demonstrat,e that the 
TV-CAR method is sufficiently robust against the non- 
Gaussian nature of glot.tal excitation since the rcsolut.ion 
in the frequency domain is improved twice due to the dec- 
imation of analytic signals with a factor two and AR pa- 
rameters are const.rained to vary in time by basis function 
in the TV-CAR method. Ftvaluating the robust ‘I’V-CAR 
method in noisy environment is future study. 
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(a2) Satural Speech /ge/ 

(h) LPC(7 = 20: S = 10,Hamming window) 

(c) ‘I‘imc:-varying covariance(?’ = 20, S = 10) 

0 

(d) Robust Time-varying(L = 2, T = 20, S = 10) 

5 

(e) Complex covariance(L = 1, T = 20: S = 10) 

(f) TV-CAR( L = 2. T = 20, S = 10) 

(g) Robust TV-(:AR(L = 2, l- = 20, S = 10) 
Fig.2 Experimental results with natural speech /gc/ 

ut tcrcd by female speaker 


