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ABSTRACT

At ICSLP’96 we presented a flexible, large vocabulary, speaker
independent, isolated-word preselection system in a telephone
environment, using a two stage, bottom-up strategy [6]. We
achieved reasonable performance in large and very large
vocabulary tasks, ranging from 1200 to 10000 words.

In this paper, we describe recent studies we have carried out on
the system, aimed at two directions: handling of non speech
sounds in the speech signal (we consider lips, respiration and
click noises); and making the preselection lists dynamic in length,
to reduce computational load, in the average. In the first case, we
want to model non speech sounds, as these effects are crucial in
real-life situations, leading to wrong endpointing and increasing
error rates. In the second, we are interested in integrating any
available system parameter to calculate the preselection list length
to use, having applied both parametric and non parametric
methods.

1. INTRODUCTION

When facing the design and implementation of real-world public
information services using the telephone network and working in
real time, important aspects arise, as opposed to the conditions
found in laboratory environments and in laboratory recorded
speech databases.

First of all, we are interested in avoiding recognition performance
degradation due to extraneous noises made by the service users.
In real situations, users are prone to embed non-speech sounds in
actual speech utterances. The typical examples in these cases are
tongue clicks and lips and respiration noises. Additionally, the
telephone network switching devices may add non wanted clicks
to the speech signal. All these effects lower recognition
performance due to two facts: errors in the endpointing and
confusions in the search. In this paper we show a simple strategy
to ameliorate them based in specific training of these non-speech
sounds.

Additionally, we want to lower computational demands, in order
to allow real time execution of the algorithms involved in the
recognition process. Automatic speech recognition systems,
being based in complex pattern matching techniques are
computationaly expensive, so that a lot of techniques have been
studied in order to reduce the search effort or to improve the
efficiency of the algorithms used. Our system, being a
preselection module, offers different alternatives to achieve the
same goal. The most obvious one consists of using specific

techniques during the search process. For example, implementing
the lexical access in a tree structure, or using well known beam
search techniques. In our baseline system, the preselection
module offers a list of candidate words to the verification stage,
and the length of this list is fixed. We try to make this length
variable, depending on any available system parameter.
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Figure 1: Hypothesis Module Architecture

2. SYSTEM OVERVIEW

At Telefénica I+D, a speech recognition system over the
telephone network has been developed, handling about one
thousand words in real time with dedicated hardware [1]. We
have implemented a hypothesis subsystem, to be run before the
integrated module, to allow increasing dictionary size (without
loosing too much recognition accuracy); or increasing the number
of recognizers that fit into one hardware board.

The main preselection modules are: Preprocessing (P), Phonetic-
string build-up (PSBU) and Lexical Access (LA), and its modular
structure is shown in Figure 1. The hypothesis module divides the
recognition process in two: the first one generates a phonetic
string, which is taken by a lexical access module to give a list of
candidate words to the verification stage. A detailed description
can be found in [6].

3. EXPERIMENTAL SETUP

For our experiments we used part of the VESTEL database [2] (a
telephone speech corpus collected over commercial telephone
lines, composed of digits, numbers, commands, city names, etc.).

The training data is divided in two sets: 5820 utterances, with no
noticeable non-speech sounds in the speech signal (from now on,



we will refer to it as the “CLEAN” training set; and 1375
utterances, with non-speech sounds present and manually labeled
to allow training specific models (from now on, the “NOISY”
training set).

The test material is also divided in two sets: the first one,
containing 1434 utterances, in which no noticeable non-speech
sounds are presented (from now on, the “CLEAN” test set); and
the second one composed of 313 utterances, in which non-speech
sounds are known to be present (from now, on the “NOISY” test
set). None of the words in the testing material lists have been
previously seen in the training set

4. BASELINE SYSTEM AND RESULTS

The inclusion rate of the preselection module actually limits the
performance of the overall system. We wanted to achieve 2%
error rate for the tasks under study, using 1200, 2000, 5000 and
10000 words dictionaries.

In this paper, we will refer to the 10000 words case, in which we
decided that a preselection list of length less than 10% of the
dictionary size would be reasonable (for example., a preselection
list composed of 900 words (9% of the dictionary size)).

In Figure 2 we show that we achieved this requirement, when
recognizing the CLEAN test set, using 23 automatically clustered
phoneme-like unit SCHMM, plus 2 models for silence (referred
as “normal modeling” from now on).
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Figure 2: Baseline experiment for the CLEAN and NOISY test
sets with no special non-speech sound modeling.

5. HANDLING NON-SPEECH SOUNDS

Presence of non-speech sounds in telephone speech is not
negligible at all. Almost 20% of the utterances recorded in
VESTEL show these effects. Clicks due to the switching
technology, tongue clicks and respiration and lips noises from the
speakers are common enough to be taken into account. Although
overall degradation is not dramatic, not facing them means certain
users will never be correctly recognized, what is clearly
undesirable in a real world system.

We have developed a simple strategy to face them, in an attempt
to achieve better results while keeping computational cost under
control. In the following figures, we give error rates versus the
size of the preselection list needed to get those rates. The

preselection list size is given as a “percentage” of words
calculated over the whole dictionary size (i.e. for a 10000 words
task, a 5% in the figures would mean we used a preselection list
composed of 500 words). To compare the results obtained, we
calculate the relative error rate reduction obtained, averaged
between the first 9 steps in the preselection results (that is, from
1% to 9%). In this way, we smooth the different behavior of the
error rate reductions in the range of interest for our system.First
of all, we measured the error rate using the same set of SCHMMs
than in the baseline experiment and applied to the NOISY test set.
In Figure 2 and Table 1 (in which we summarize the results for
both subsets in the test database and the overall performance), we
can see that for the range of interest (between 1% and 9%), error
rate increases, in average, in 39% when comparing with the
CLEAN test set.
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Figure 3: NOISY test set. With and without specific non-speech
sound modeling.

Then, we used the hand labeled non-speech sounds in the NOISY
training set, to obtain a single “non-speech sound” SCHMM, with
the same topology than the others. In order not to increase
computational load, we decided to keep the same number of
models considered in the PSBU module, so we used only one
silence model. Summarizing, we kept the 23 phoneme-like unit
SCHMMs, one model for silence, and one for non-speech sounds
(referred as “special modeling” from now on); and run the same
experiment. As in the baseline system, both silence and non-
speech sound models are discarded prior to forward the phonetic
string to the LA module. We tested how this reduction in number
of silence models affected performance in the CLEAN test set,
and we found a slight increase in average error rate of 0.2%,
showing the method does not significantly degrade the results
obtained in the baseline experiment.

In Figure 3, we compare the recognition performance on the
NOISY test set, using specific non-speech sound modeling
(normal modeling) and not using it (special modeling). Error rate
reduction, on the average, is almost 7% and shows a consistent
improvement behavior in the range of interest.

An additional point of comparison was made measuring the
difference in performance between test sets with and without non-
speech sounds. When using the specific model to handle non-
speech sounds, error rate increase is almost 30%, compared with
the previous 39% figure. Obviously, we still have worse



performance, but the differences are lower. As a final result,
Figure 4 shows the overall error rate reduction using the whole
test database. Average error rate actually decreases compared
with the baseline experiment (in which the CLEAN test set was
used) in around 1.4%, a slight overall improvement, due to the
lower proportion of utterances with non-speech sounds in the
database, and the slight degradation that the method produces on
the CLEAN test database.

TEST SET Normal modeling | Special modeling
CLEAN 4.7% 4.71%
NOISY 6.54% 6.11%

CLEAN+NOISY 5.03% 4.96%

Table 1: Average error rates for the test database sets.

Similar comparative rates have been obtained in experiments
using 1200, 2000 and 5000 words dictionaries, even in other
tasks, showing that the behavior of the approach used is consistent
and that it is important of introducing additional mechanisms to
face non-speech sounds in speech signals.

6. DYNAMIC PRESELECTION LISTS

In the baseline system described above, the preselection module
generated a list of candidate words of fixed length, to be given to
the verification stage. Our idea is making this length variable,
depending on any available system parameter (number of frames,
phonetic string length, PSBU probability estimation with
different normalizations, lexical access cost, etc.). We were
thinking in, for example, determining whether the word length
(number of frames) was somehow related to recognition
confidence, taking into account that, usually, longer words were
possibly better recognized and viceversa. So, for longer words, a
shorter preselection list could be used, and computational
demands could also decrease.

The key factor to evaluate different methods in our case is
calculating the average effort, defined as the average preselection
list length required to ensure that the error rate in this stage is
under 2%. If this average effort is lower than the fixed
preselection list length, the method is acceptable, and it would be
better as this average effort decreases.
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Figure 4: Whole test database results. With and without non-
speech sound modeling

We applied parametric and non-parametric approaches, using
data-driven techniques to estimate the relationship between the
available parameters and preselection list length.

In the non-parametric case, our work was oriented towards
building a pruning histogram, relating any given parameter (or
parameter range) to a certain preselection list length. We start
with a fixed preselection list length for every parameter value (or
range): the one needed to ensure 100% inclusion rate. Then, the
idea is iteratively search for the utterances in which the system
performed worst (that it, the ones for which the preselection list
must be longer), and discard them if possible (basically if this
discarding does not affect more than one word) That means
modifying the pruning histogram, using a lower value for the
preselection list length for this utterance parameter value (or
range). At the end of every iteration, the updated histogram is
used to test the inclusion rate achieved and if conditions are met
(error rate is below 2%), the process starts over again.
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Figure 5: Average effort evolution using the number of frames as
the control parameter in the non-parametric approach

In Figure 5, we show the average effort evolution as a function of
iteration number, in an experiment in which the fixed list length
to ensure 2% error rate was 216 candidates, using the number of
frames as the control variable. The grey area shows the region for
which the average effort was below 216 and the error rate
measured was under 2%. In the optimal case, it would mean that
we could get an average effort of around 75, that is, a reduction of
up to 65%. This approach seems to be promising but has two main
drawbacks. First of all, the pruning histograms are heavily
dependent on the training data, so that they should be further
smoothed to content with unknown data, leading to an average
effort that will always be above the optimal value mentioned (75).
The second refers to the granularity used to discretize the
continuous range of certain parameters (for example, the log-
likelihood computed in the PSBU module): as we make the
intervals smaller, we obtain histograms too close to the training
data. If we choose bigger intervals, more files will be affected by
the pruning threshold imposed by the worst of them, so that the
reduction in average effort is lower.

In the parametric case, we impose a fixed analytic relationship
between the parameter and the list length. Our first attempt in this
direction has been using a linear function of the control
parameter. For example, when using the number of frames as the
control variable, the longer the word, the smaller the list, and
viceversa. In Figure 6, we show for every file, the pairs (number
of frames, position in which the file was recognized). So, we only



need to estimate the line equation leading to the required results.
In our example:

preselection list length = — g—g -NumFrames + CO

where PO and CO are values to calculate (graphically, they are the
intersecting values of the line equation in the two axis of Figure
6). In the upper dark area of Figure 7 we show the values of pairs
(PO, CO0), for which we obtain average effort below 216
candidates, and error rate below 2%. In the lower dark area of the
same Figure, we have plotted the actual average effort. From
these two sets of graphical data, we can see (points marked in
Figure 7) that for, approximately, PO=125 we get a minimum
value of average effort, which is roughly 160, what means a
reduction of almost 26%. This would correspond to a value of
C0=410, given the valid area shape in the upper graphic, the value
of PO and the estimation formula used, searching for CO’s
minimum value. This optimum line equation (P0=125, C0=410)
is shown in Figure 6.
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Figure 6: Plot of pairs (number of frames, position in which the
file was recognized). Line shows the optimum in the parametric
case. Recognized position has been clipped to a value of 1000

The main drawback in this case is the simplicity of the
preselection list length estimation function. We are confident in
this being a more promising approach, specially when combined
with the non parametric one, but we need to derive more complete
functions, including more parameters and better parameter
estimation methods. Unfortunately, none of the approaches
applied has given a definitive solution yet, and lot of work is to be
done to achieve an implementable strategy.

7. CONCLUSIONS AND FUTURE WORK

Presence of non-speech sounds in telephone speech is fairly
common (around 20% of the cases) and important enough to be
taken into account when designing and testing real-world
systems. We have applied a simple strategy to face this problem,
achieving reasonable results. The overall performance using the
whole test set is slightly better than using the CLEAN subset
(1.4% decrease in error rate), and the results have been
considerably improved when comparing the degradation between
the two test sets. In any case, we are more concerned with the idea
of being able to correctly recognize some of those speakers

systematically presenting non-speech sounds in their utterances,
even if their proportion is low. We are working on more complex
non-speech sound modeling to improve performance.

We have also presented some preliminary ideas towards
achieving dynamic preselection lists, using both parametric and
non parametric techniques. None of them have been intensively
tested nor have been refined to allow a final implementation, but
we consider this is a good starting point in the topic. In this area,
we are currently working in combining the parametric and non
parametric approaches, applying regression analysis methods to
make the parameter estimation process and studying the
application of techniques based in neural networks as a novel
approach to preselection list length estimation.
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Figure 7: Valid pairs of PO, CO and average effort using a linear
function of the number of frames in the parametric approach
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