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ABSTRACT

We present a study of data simulated using acoustic models
trained on Switchboard data, and then recognized using various
Switchboard-trained acoustic models. When we recognize real
Switchboard conversations, simple development models give a
word error rate (WER) of about 47 percent. If instead we simu-
late the speech data using word transcriptions of the conversation,
obtaining the pronunciations for the words from our recognition
dictionary, the WER drops by a factor of five to ten. In a third
type of experiment, we use human-generated phonetic transcripts
to fabricate data that more realistically represents conversational
speech, and obtain WERs in the low 40’s, rates that are fairly
similar to those seen in actual speech data.

Taken as a whole, these and other experiments we describe in the
paper suggest that there is a substantial mismatch between real
speech and the combination of our acoustic models and the pro-
nunciations in our recognition dictionary. The use of simulation
appears to be a promising tool in our efforts to understand and
reduce the size of this mismatch, and may prove to be a generally
valuable diagnostic in speech recognition research .

1. MOTIVATION

In recent years, steady progress has been made in automatic
recognition of conversational telephone speech [1]. Neverthe-
less, state-of-the-art systems, running at hundreds of times real
time, using hundreds of megabytes of memory, still have word
error rates of more than 30%. How much improvement can be
expected? For example, can we achieve a 10% error rate recog-
nizing conversational telephone speech?

In this paper, we seek to shed some light on these matters by sim-
ulating speech data from speech models, and then exploring the
performance of our standard speech recognition algorithms when
applied to this data. The great merit of simulated data is that we
understand, and can control, the probability mechanism that pro-
duces it. The use of simulated data in probing the strengths and
weaknesses of pattern recognition algorithms is standard practice
in the mainstream statistical literature and is, perhaps, not so com-
mon in speech recognition circles as it should be. A subsidiary
goal of this paper, therefore, is to provide an example of the fruit-
ful use of this sort of technique.

Our focus in the experiments we report here is on acoustic mod-
eling and on pronunciations. Although signal processing and lan-
guage modeling are undoubtedly important components in speech
recognition, and progress in these areas continues to be made,
we believe that acoustic and pronunciation modeling provide the
most fertile fields for improvement.

A primary source of concern with our present modeling tech-
niques is simply that real speech data may not be adequately
described by our acoustic models. By generating data from the
acoustic models, we can, in essence, eliminate the problem of
“mismatch”. What will happen when we try to recognize such
data? Suppose that the error rate remains high. This would sug-
gest that the acoustic states of conversational speech, as captured
by our training procedure, are inherently poorly separated and
confusable. If the error rate is near zero, that would suggest that
there is a serious problem of mismatch between model and data.
The experiments we have done will suggest that the mismatch
problem is a sizable one, and that, in particular, the mismatch be-
tween the pronunciations in our standard lexicons and those that
are actually used by people in conversation may be the key to the
puzzle.

In this paper, Section 2 gives an overview of our two main
schemes for simulating data, along with a description of the test
set, and the acoustic and language models used. Section 3 goes
on to discuss a series of experiments with simulated and real data,
and Section 4 draws some conclusions.

2. SIMULATING DATA

In our experiments we use two data simulation schemes. In the
first, we generate data using the pronunciations in our recognition
dictionary, while the second makes use of hand-labeled phonetic
transcriptions.

The experiments reported in this paper are based on the “test-
ws96dev-i” devtest, used in the 1996 and 1997 summer work-
shops at Johns Hopkins [2], whether it be real data or simulated.
While this test is rather small — 6 two-sided conversations, lasting
23 minutes, and composed of 4700 words total — ICSI (the Inter-
national Computer Science Institute at the University of Califor-
nia at Berkeley) has made hand-labeled and time-marked word
and phonetic transcripts of it [3]. We use these invaluable tran-
scriptions to determine the phonemes actually uttered in the con-
versations. Of course, humans are not infallible; in particular,
two experienced transcribers will disagree over 20% or so of the
phoneme tokens in this difficult material [3]. Nevertheless, these
being the best available phonetic transcriptions, we use them.

2.1. Simulation from Phonetic Transcript

One data simulation scheme begins with ICSI’s devtest pho-
netic transcripts. Using a transliteration table, which maps each
of the ICSI phonemes to one or two of Dragon’s Switchboard
phonemes, we convert ICSI’s phonemes into ours, and decom-
pose the resulting phoneme string into a sequence of context-
dependent phoneme states. For each state, we randomly choose a



component from the state’s mixture model, based on the mixture
weights, and probabilistically generate a frame from the com-
ponent. We determine how many frames to generate for each
phoneme state by simulating an observation from the duration
model for the state.

2.2. Simulation from Dictionary

Our other simulation method determines the triphone sequence
differently, by assuming (incorrectly) that people pronounce
words exactly as in our recognition dictionary. We take word tran-
scriptions of the ICSI devtest, and look up pronunciations for the
words in our dictionary, randomly choosing among multiple pro-
nunciations for a word as necessary. We reduce the selected string
of pronunciations into a sequence of context-dependent phoneme
states, and proceed exactly as described above.

This data simulation scheme is likely to produce less realistic data
than simulating from phonetic transcript. As we shall see below,
the pronunciations used in conversational speech are far more var-
ied than recorded in our recognition dictionary, and by requiring
that words be pronounced according to our dictionary, we may
significantly understate the phonological variety of speech.

2.3. Acoustic and Language Models

We train an acoustic model from a Viterbi alignment of 60 hours
of Switchboard data, and also train two 30-hour models on data
divided such that the two sets are gender-balanced, and share no
speaker.

The language model is constructed with all the bigrams and uni-
grams in the three million word Callhome and Switchboard train-
ing sets, smoothed by absolute discounting; the vocabulary is con-
structed by taking all 28000 distinct words found. Our recogni-
tion dictionary has about 32000 pronunciations for these words;
about 3500 of the words have more than one pronunciation. All
alternate pronunciations are treated as equally probable by the
recognizer.

3. EXPERIMENTS

We present two series of experiments: comparing recognition
of real and simulated data, and exploring the failure to improve
recognition of real data by augmenting the pronunciations in the
recognition dictionary.

3.1. Comparing Simulated and Real Data

In this experiment, we recognize both real and fabricated speech
data, using the three acoustic models described above. The fabri-
cated data is generated using the first (AM1) of the 30-hour acous-
tic models. We see in Table 1 that for real data, the two 30-hour
models produce very similar WERs, while the 60-hour model is
about 2 percentage points better. This is a typical result; it shows
that the two 30-hour sets, while yielding comparable recognition
results, contain at least partly complementary information.

Recognition of the speech simulated from dictionary gives a very
different picture. When we recognize with the same acoustic
models that we used to generate the data, the error rate drops be-
low 5%. This situation corresponds to recognition with models
trained on an infinite amount of data; by construction, the data
complies perfectly with the probability assumptions of the model.
When we recognize with models trained on completely disjoint

30hr AM1 | 30hr AM2 | 60hr AM
Test Set WER (%) | WER (%) | WER (%)
Real Data 48.2 48.8 46.3
Data simulated
from dictionary 4.3 10.8 8.4
Data simulated
from phonetic 41.3 43.9 41.4
transcription

Table 1: Baseline WER and WERs when recognizing data simu-
lated with AM1, along with either a dictionary, or with phonetic
transcripts.

data (AM2), the error rate doubles, but still hovers near 10%.
This behavior illustrates the fact that the generating and recog-
nizing models, trained on different data, disagree. The 60-hour
models have seen AM1’s training data, but are led in a somewhat
different direction by AM2’s: the result is an error rate between
that of the two 30-hour models.

We can take some encouragement from these results. The acous-
tic models appear to be sharp enough that simulated data is rec-
ognized incorrectly five to ten times less often than real data.
In other words, while you might assign some of the mistakes in
recognition of real speech to the confusability of our models, most
of the errors appear to be due to something else!

So if we use our recognition dictionary to choose pronunciations
for words in a transcript, and generate speech data from the pro-
nunciations that complies with the probability assumptions of our
acoustic model, we can get impressively good recognition results.
But what happens when we relax the requirement that data be
generated from pronunciations in our recognition dictionary?

In the third entry of Table 1, the data is fabricated using the 30-
hour acoustic model 1, along with the ICSI phonetic transcripts,
without recourse to the pronunciations in the recognition dictio-
nary. Word error rates are only a little better than those obtained
when recognizing real data. Even recognizing with the same
acoustic models that generated the data (AM1) — in other words,
with acoustic models that perfectly represent the triphones used —
makes only a small difference.

This contrast is striking. When we force words (through the sim-
ulation process) to be pronounced according to our recognition
dictionary, we get astoundingly good recognition, but when words
are simulated with pronunciations that more fairly represent the
diversity found in conversation, the error rate is nearly as high as
for real speech. Put most provocatively, the variant and reduced
pronunciation of casual speech accounts for most of the errors
made by this recognition system.

That words are pronounced in unexpected ways in conversational
speech is not, itself, unexpected. In fact, the manner in which
we train our acoustic models works to reduce the impact of unex-
pected pronunciations. We train from alignments in which each
frame of training data is mapped to a phoneme state; the states
to which we align are determined from the word transcription by
the recognition dictionary. When the word is pronounced accord-
ing to the recognition dictionary, then the model for that triphone
stands a chance of being trained on the right data. When it’s
pronounced differently (if we trained on this test set, that would



happen about half the time), then the alignment will be incor-
rect, assigning frames from the wrong triphone. By using deci-
sion tree clustering, and multiple components in each mixture, the
models can deal to some extent with this sort of misassignment,
but end up being more diffuse, and needing more components,
than they might otherwise. Furthermore, since the WER on data
that matches the triphone models perfectly is almost as bad as for
real speech, adding components proves not to be as robust against
missing pronunciations in training as might be hoped.

3.2. Dictionary Expansion — Simulated Data

If our recognition dictionary lacks useful pronunciations, then
perhaps we can try to improve it by adding some. Note that oth-
ers (eg, [5]) have also done this with real data; by and large they
have seen only small improvements in performance. We add ev-
ery pronunciation we find in the phonetic transcripts, even if it
occurs only once. We note that there are about 4700 tokens in
the test data, amounting to 900 distinct words. Only 47% of the
tokens are pronounced as in our dictionary. About 650 words are
pronounced only one way in the test data, while the has 36 dif-
ferent pronunciations, according to the transcripts. Only about a
quarter of the 2100 test data pronunciations are in our dictionary,
so we end up adding 1500 new ones to create the “base + test”
dictionary of Table 2.

30hr AM1 | 30hr AM2 | 60hr AM
Dictionary WER (%) | WER (%) | WER (%)
base 41.3 43.9 414
base + test 23.9 33.5 29.8
base + train 50.6 50.3 48.2
base + test +
train 30.4 40.2 35.7

Table 2: Simulated data, recognized using baseline and aug-
mented dictionaries. Data is simulated with the 30hr AM1, using
the ICSI phonetic transcriptions to determine the triphones.

Note that while all of the acoustic models experience improved
recognition, AM1 improves the most; the better the acoustic
model matches the data, the greater the benefit from having an
augmented dictionary. This is another instance of a “perfect” dic-
tionary, as with data simulated from dictionary in Table 1. In this
case, however, instead of the error rate dropping to 5% or 10%,
it goes down to 20% or 30%. The difference appears to be con-
fusability among the prons: there are many more homonyms and
near homonyms in the “base + test” dictionary than in the base
dictionary alone. For example, in our base dictionary, only one
pronunciation is associated with as many as five different words:
sons, son’s, sons’, suns, and sun’s; no pair of words shares more
than two pronunciations. By contrast, the “base + test” dictionary
has 38 pronunciations associated with 5 or more words, headed by
schwa, which is a pronunciation for 27 different words. Nineteen
word pairs share three or more pronunciations; the most confus-
able pair is the and o, which have 7 pronunciations in common.

Of course, it is cheating to look into the test data to discover
new prons. Suppose we gather pronunciations from a different
set of phonetically transcribed data: the “train-ws96-i” set, also
produced by ICSI and used in the 1996 and 1997 summer work-
shops at Johns Hopkins. This data has about 10000 word tokens,
of which 1500 are distinct, pronounced 3400 ways. About 500 of
these words are shared with the test data; of these shared words,

about 700 word/pron pairs are held in common, and 1400 are
unique to the training data. For example, the has 38 pronunci-
ations in the training data; only half of these are observed in the
test set. In addition, the training data has 1000 words (with 1300
prons) that don’t occur in the test data. After adding all the train-
ing pronunciations to our dictionary, about 71% of the word to-
kens in the test set are pronounced as in the dictionary, up from
47% before expansion.

The “base + train” entry in Table 2 gives recognition results af-
ter we have added these training pronunciations to our base dic-
tionary It is noteworthy that all of the acoustic models yield
degraded performance with this dictionary. We have evidently
added too much confusability, and too few of the pronunciations
that do occur in the test data. It also gives some notion of the fu-
tility of simply adding pronunciations en masse: it is all too easy
to make recognition worse.

Recognition results when both the test and training pronuncia-
tions are added are listed on the “base + test + train” line of
Table 2. All the acoustic models experience improved results
compared to the “base” recognition, despite the confusability
added by the extra pronunciations and inevitable homonyms (the
phoneme schwa is a pronunciation for 35 different words; 79 pro-
nunciations have 5 or more homonyms). For the simulated data,
it appears that is possible to improve recognition by adding pro-
nunciations to the dictionary — provided that “enough” of the per-
tinent ones are added relative to the increased confusability.

We can see the effects of confusability in these results by exam-
ining the kinds of errors we are making in, as reported in Table
3. This data is generated with AM1 along with the phonetic tran-
scripts, and recognized using AM2. Note that many of the added
pronunciations are very short, corresponding to common words,
and so tend to be inserted frequently. In general, adding prons de-
creases the number of deletions, but increases the insertion rate.
Adding the more pertinent test pronunciations decreases substitu-
tions, while adding the training prons tends to increase them.

Dictionary | Total | Insertions | Deletions | Substitutions
base 2063 99 710 1254
base + test 1577 184 360 1033
base + train | 2364 346 376 1642
base + test + | 1891 236 359 1296
train

Table 3: Breakdown of errors by type, for synthetic data gener-
ated by AM1, and recognized using AM?2 and the baseline and
augmented dictionaries.

3.3. Dictionary Expansion — Real Data

Because adding the test pronunciations to the lexicon appeared al-
ways to improve recognition performance, even when many other
misleading prons are also added, we wanted to repeat these exper-
iments with real data instead of phonetically-simulated data. The
results are listed in Table 4.

We see that in all cases, adding more pronunciations to the recog-
nition dictionary seriously degrades performance. Even when we
cheat, and add only the pronunciations that we know will occur
in the test set, recognition still gets worse. This is in sharp con-
trast to the situation with simulated data: for example, when we
add the test prons to the dictionary and recognize with AM2, the



30hr AM1 | 30hr AM2 | 60hr AM
Dictionary WER (%) | WER (%) | WER (%)
base 482 48.8 46.3
base + test 58.6 60.8 58.5
base + train 64.3 65.7 63.1
base + test +
train 65.3 66.8 65.5

Table 4: Real data, recognized using baseline and augmented dic-
tionaries.

WER for simulated data drops from 43.9% to 33.5%, whereas it
increases from 48.8% to 60.8% for real data.

Analysis of the errors made (Table 5) shows a pattern broadly
similar to synthetic data, although to a degree less favorable to a
low WER. Adding pronunciations tends to increase insertions and
decrease deletions, just as with synthetic data, but with real data
insertions increase more and deletions decrease less. Real data
differs from simulated data, in that the number of substitutions
increases whenever pronunciations are added.

Dictionary | Total | Insertions | Deletions | Substitutions
base 2296 323 461 1512

base + test | 2861 616 334 1911

base + train | 3091 729 297 2065

Table 5: Breakdown of errors by type, for real data recognized
using baseline and augmented dictionaries.

We believe this discrepancy is more evidence of the mismatch
between real speech and our acoustic models, or, equivalently,
the difference between real and simulated speech. Consider the
speech from which a model is trained. The speech contains
frames from the right triphones, and many wrong ones. We build
a model from the data, averaging the frames from right and wrong
triphones into a few gaussians. When we build models from dis-
joint data, and use one model to generate data and the other to
recognize, we find simulated data is easier to recognize than real
data. That is because the recognition algorithm and simulated
data are both built upon the compromises implicit in model build-
ing. Models built upon two sets of disjoint data can be made
arbitrarily similar by training from more and more data, assum-
ing that speech exhibits a finite amount of diversity. Despite this
convergence, a 30-hour model is still surprised by phenomena in
real speech, more surprised than by data generated from the other
model.

Both simulated and real speech remain susceptible to confusabil-
ity from exact homonyms in the dictionary, but since simulated
speech is a better match to acoustic models (even ones trained on
different data), it is less vulnerable to near homonyms. That is
why speech fabricated from a model can take better advantage of
added pronunciations.

We can see this effect at work when we compare the error rate for
words pronounced according to our dictionary with words pro-
nounced differently (Table 6). We consider the non-cheating case,
where we generate data with AM1, and recognize with AM2. For
each word token in the correct transcript, we record whether it is
pronounced according to the recognition dictionary, and whether
it was recognized correctly, thus compiling in-dictionary and out-

of-dictionary error rates. Note that these statistics are smaller than
the word error rate, since it does not account for errors due to in-
sertion.

Error rate: Error rate: Error rate:
Data prons in | prons out of overall
Source dictionary | dictionary
real data (base) 354 474 41.8
data simulated from
phonetic transcript 24.1 57.3 41.7
(base)
real data
(base + train) 46.3 59.6 50.2
data simulated from
phonetic transcript 345 63.5 42.9
(base + train)

Table 6: FError rates for words in reference transcripts, broken
down by whether their pronunciations are in the recognition dic-

tionary.

As might be hoped, word tokens pronounced according to the
dictionary are more likely to be recognized correctly than tokens
pronounced in an unexpected way. But the difference between
the error rates is smaller for real than for synthetic data, since the
models do not match up so well with real speech as with sim-
ulated. Having the just the right pron is less important for real
speech, and similarly, lacking the right pron is less costly.

4. CONCLUSION

‘We have outlined an avenue of investigation using data fabricated
from acoustic models. Data simulated from dictionary pronunci-
ations tend to WERs of 5% to 10%. When the data is simulated
from phonetic transcriptions, WERs rise into the 40%s; when we
add dictionary pronunciations, we see a decrease in the error rate
for simulated data, so long as “enough” correct prons (the ones
that occur in the test set) are included. Real data, on the other
hand, always gets worse recognition results, at least when the
dictionary is augmented in this unconstrained way, and the recog-
nizer does not apply unigram or bigram probabilities to alternate
pronunciations. We believe this discrepancy is due to a mismatch
between real speech and the models built from it. At least part
of this mismatch is due to the extremely varied pronunciations
found in conversational speech, and the way we train our mod-
els. Reducing this mismatch will be vital to continued progress in
automatic recognition of conversational speech.
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