Measuring the Dynamic Encoding of Speaker Identity
and Dialect in Prosodic Parameters

Michael Barlow 1

and Michael Wagner#

FUniversity of NSW/ADFA, AUSTRALIA
FUniversity of Canberra, AUSTRALIA

ABSTRACT

This paper describes a methodology, and the results stemming
from it, for analysing the dynamic encoding of speaker identity
and dialect in prosodic parameters. A method based on
employing properties of the well known Dynamic Time Warping
(DTW) algorithm’s path of best match allows the separation of
purely dynamic from static properties of acoustic parameters and
hence their evaluation as to dynamic encoding of speaker
characteristics.

Nineteen adult speakers of Australian English were recorded
uttering a set of four sentences on five separate occasions over a
period of at least one week. The prosodic parameters Fy, short-
time energy, zero crossing rate and voicing were extracted for all
data and analysed as to their dynamic encoding of speaker
identity and dialect. Discriminate analysis (for speaker identity)
and correlation analysis (for speaker dialect) analysis showed
higher dynamic encoding of identity (75%) and dialect (0.58)
than static encoding (55% and 0.45 respectively). Normalisation
of all parameters into the range 0—1 reduced discriminate and
correlation scores to 70% and 0.54 respectively.

Contrasting the warp path parameters with the more
conventionally employed DTW distance showed that the warp
path parameters better measured speaker identity (72% versus
54%) and speaker dialect (0.56 versus 0.31) encoding.
Individual analysis of the prosodic parameters shows a far
higher encoding of identity and dialect in Fy, though all four
parameters encode dialect and identity.

1. INTRODUCTION

One of the well recognised divisions in the form of speaker
characteristic encoding in utterances is that between static (time
invariant) and dynamic (time varying) [4].

While many researchers have pointed out this division, most
work has targeted static, segmental level encoding and chiefly
that of speaker identity. One of the reasons for this lack of
attention to dynamic, suprasegmental (prosodic) encoding is the
difficulty in measuring, quantifying, and meaningfully
contrasting both the dynamic parameters and other speaker
characteristics.

With a methodology that allows the separation of the inter-
woven dynamic and static encoding in any acoustic parameter it
becomes possible to evaluate the degree and form of speaker

characteristic encoding in prosodic parameters—something
often illustrated by perceptually motivated experiments (e.g.,
[7]), but not normally quantified adequately.

This paper describes a methodology employing the well-known
Dynamic Time Warping algorithm to measure both the local and
global temporal differences between two acoustic parameter
contours. Whereas the DTW distance computes a single, scalar
average difference between two contours the warp path: the
calculated temporal path of best match captures micro and
macro temporal differences between the two contours.

Properties of the warp path, rather than the DTW distance, were
used to measure the dynamic encoding of speaker identity and
dialect in the acoustic parameters.

2. SPEECH DATA

A database of nineteen (19) adult speakers (12 male and 7
female) of Australian English was recorded. The speakers
uttered a set of four (4) sentences on no less than five (5)
occasions each, over a period of not let less than one week.
Table 1 lists the four sentences employed.

Text
“We were away a year ago.”
“I cannot remember it.”
“How do you know?
“We are firm.”
Table 1: Sentences employed in the study and recorded by
nineteen adult speakers of Australian English on no less than
five separate occasions each.

Although clearly a simplification, the dialects of Australian
English, as described in [2] were mapped onto a linear
numerical scale. A linguist listened to all utterances and
assigned each speaker a dialect score ranging from zero (for
cultivated dialect), through the dialect spectrum continuum to
ten (for broad dialect) [2].

2.1. Parameter Extraction

Speaker utterances were recorded in a quiet environment. The
recordings were then low-pass filtered at 7.6kHz before 12-bit
quantisation at a sampling rate of 16kHz. The recordings were
then hand-segmented to detect sentence start and end-points.



For each sentence four prosodic parameters were extracted with
25ms frames as follows:

e Energy — Log Mean Squared Amplitude.
e Zero Crossing Rate

¢ Fundamental Frequency (F,) — extracted using a
time domain parallel pitch detector with a 25ms
frame, and a 10ms frame shift. Unvoiced frames
were eliminated

e Voicing — Voiced/Unvoiced values were
extracted for a frame size of 25ms, with a 10ms
frame shift based on the output of the pitch
tracker. Voiced frames were assigned the value
1 and unvoiced frames assigned the value O,
creating a square-wave representation.

Derived acoustic parameter series were post-processed with a
median-5, followed by a mean-3 filter [6] in order to eliminate
spurious values.

3. METHODOLOGY

In order to both quantify the temporal variability of acoustic
parameter values and also allow meaningful evaluation of
speaker characteristic encoding a number of new methods were
designed for the experiments.

3.1 DTW Mechanism & Parameters

As conventionally applied the DTW algorithm allows the time-
alignment of two vectors such that a distance may be calculated
between the two aligned vectors. Fundamental to this approach
is the calculation of a warp path: an alignment of the two vectors
which is constrained by conditions of monotony, continuity and
limited divergence, and which, in essence, stretches portions of
each vector (through repetition of values) so that their alignment
is optimal (mean distance between aligned pairs along the path
is minimal). In conventional DTW the warp path is a by-product
of the distance calculation and not generally used further.

Clearly, however, the warp path encodes details of the relative
temporal differences between the two vectors in question; in
other words their relative dynamics. To quantify such
information means to create a powerful tool for examining
dynamic encoding.

While there are any number of variants on the DTW algorithm, a
very simple approach allowing only horizontal, vertical, and
diagonal transitions (without skipping) was chosen in order to
facilitate the extraction of warp path properties.

Examining a warp path, as illustrated in figure 1 and employing
the formulation above, certain key properties of the warp path
become clear. A transition is a movement along the warp path
from one point to the next. Transitions may be horizontal,
diagonal, or vertical. A series of transitions, all in the same
direction and bounded by either a transition in another direction,
or the end of the warp path may be considered an excursion. For
instance, in figure 1, there are a total of eight diagonal

transitions, which comprised four separate diagonal excursions,
the longest being of length three (in the middle of the path).
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Figure 1: Illustration of the basic DTW (Dynamic Time
Warping) paradigm in which a warp path (path of best fit) is
calculated between a test and reference acoustic vector.

Intuitively, these transitions and excursions indicate the
“goodness of fit’, and hence temporal alignment of the two
acoustic parameters in question. Diagonal transitions indicate
the contours are well aligned at that point, whereas horizontal
and vertical indicate misalignment. Excursions show regions of
alignment (diagonal) or misalignment (vertical or horizontal).
The number of excursions indicates the number of temporal
adjustments required for a best match, while the length of
excursions the degree of alignment (diagonal) or misalignment
(vertical or horizontal) in that region.

Nine properties of the warp path were extracted relating to the
concept to transitions and excursions. For each of the three
directions of transition (horizontal, diagonal, and vertical) the
following three properties were measured: the total number of
transitions in that direction; the number of excursions in that
direction; the length of the longest excursion in that direction.
All values were normalised by dividing them by the total length
of the warp path (yielding a value between 0 and 1).

Two additional measures were devised in an attempt to quantify
the macro alignment of the two acoustic parameters. The first
simply measured the ratio of the warp path length (K) to the
longer of the two acoustic parameters (values close to 1 indicate
little “non-productive” warping). A second measure (8), which
calculated the mean distance of the warp path (wk = [iy,jk]) from
the theoretically optimal path of the straight line joining the start
([1,1]) and end-points([M,N]), was also created.
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3.2 Speaker Identity Experiments

Experiments to determine the degree of identity encoding were
conducted by calculating intra-speaker and inter-speaker scores
for individual sentence, repetition and acoustic parameter
couplings using the procedure described above.

In order that the influence of other speaker characteristics was
minimised inter-speaker comparisons were only made between
speakers of the same gender.

Discriminant analysis [5], the degree of separation between
inter-speaker score and intra-speaker score distributions, was
applied. This yielded a single percentile figure that measured the
overlap between the two distributions:- 100% being no overlap
and 0% implying no separability. It is worth noting that this
figure is an absolute lower-bound on the performance of a
recognition system that employed the parameterisation and
weightings.

3.3 Speaker Dialect Experiments

Experiments to determine the degree of dialect encoding were
conducted by computing scores between instances of individual
acoustic parameters for each sentence and repetition pairings.

In order that the influence of other speaker characteristics was
minimised only inter-speaker and intra-gender scores were
calculated (i.e., always between different speakers but of the
same gender).

Characteristic | Dynamic Static Combined
Identity 74.6% 54.8% 75.2%
Dialect 0.563 0.452 0.584

Table 2: Speaker identity and dialect encoding results
contrasting dynamic and static encoding.

To allow the evaluation of dialect encoding, a dialect difference
score was calculated for each comparison as the absolute
difference between the dialect values assigned the speakers of
that utterance. For instance, all comparisons between a speaker
with a dialect score of seven, and another with a score of 3
would be regarded as having a dialect difference of four. These
dialect differences were then correlated with the values extracted
from the DTW based comparison method.

4. RESULTS

Table 2, and figures 2 and 3 show the basic results for speaker
identity and dialect when measures of the dynamic encoding are
contrasted with static encoding measures.

In order to ensure that purely dynamic (temporal) properties of
the acoustic contours were being employed the parameters were
normalised into the range 0—1 via the following formulation:
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Figure 2: Speaker identity discriminate analysis results showing
a rate of 74.6% for dynamically encoded information and 54.8%
for statically encoded information. The intra-speaker score
distribution is represented by the broken-line, while the inter-
speaker distribution is represented by the solid line.
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Figure 3: Speaker dialect correlation analysis results showing a
correlation of 0.563 for dynamically encoded information and

0.452 for statically encoded information. Dialect difference
between contrasted speakers is plotted along the horizontal axis.

Such an approach removes all absolute static information about
the parameters (e.g., absolute pitch level). Table 3 presents the
results of the normalisation when purely dynamic properties are
examined.

Characteristic Un-Normalised Normalised
Identity 74.6% 69.6%
Dialect 0.563 0.524

Table 3: Speaker identity and dialect encoding results showing
degree of dynamic encoding as measured when all acoustic
parameters are normalised into the range 0—1.

Table 4 shows the results of the analysis of the individual
acoustic parameters:- energy, fundamental frequency, voicing
and zero crossing rate, as to their individual encodings of
speaker identity and dialect.




In order to evaluate the utility of the warp path parameters when
compared with the more conventional DTW distance approach,
speaker identity and dialect encoding experiments were
conducted which directly contrasted the two measures. Table 5
shows the results of those experiments.

Acoustic Identity Dialect
Parameter Encoding Encoding
Energy 58.2% 0.359
F, 64.6% 0.364
Voicing 47.6% 0.261
Zero Crossings 51.5% 0.306

Table 4: Contrast of the four prosodic parameters as to degree
of speaker identity and dialect encoding.

5. DISCUSSION

Examining the results presented in the previous section it is
clear that both identity and dialect show high degrees of
encoding in the prosodic parameters. This is well known for
identity but somewhat surprising for dialect: the three Australian
idiolects are defined by their allophonic variance [2]. As can be
seen from figure 3 the dialect correlation with the measured
parameters is a general trend, and one that does not apply in all
instances.

Characteristic DTW Warp Combined
Distance Path
Identity 54.2% 72.0% 74.6%
Dialect 0.301 0.450 0.563

Table 5: Contrast of the conventional DTW distance with
measures derived from the DTW warp path as to utility for
extracting speaker identity and dialect encoding.

Examining the form of encoding it is clear from table 2 that both
identity and dialect are more strongly encoded in the dynamic,
temporal properties of the prosodic parameters than their static
properties.

This result is made even clearer by the results shown in table 3.
Even with all parameter contours being normalised to lie within
the range 0—1 high levels of encoding of both identity and
dialect are shown. Clearly, with the absolute static information
of the parameters eliminated by normalisation the methodology
is left measuring only temporal properties of the parameters, and
suffers little drop in discrimination (identity) or correlation
(dialect) rate. Indeed, contrasting the results of table 2 with
those of table 3 it may be seen that even after normalisation
more information is carried in the dynamic properties of the
prosodic parameters than in their pre-normalisation, static
properties.

Analysing the results for individual prosodic parameters it is
clear that all encode some degree of information concerning
speaker identity and dialect. Clearly, fundamental frequency
shows the highest levels of encoding; though still considerably

less than that when all four parameters are combined (showing
the utility of using multiple parameters).

When the methodology itself is examined, as illustrated in table
5, an interesting result becomes clear. The warp path encodes, or
more accurately is capable of extracting significantly higher
levels of both identity and dialect encoding, than the DTW
distance itself. This has implications for recognition systems
employing dynamic-time-warping, as well as potentially offering
anew ‘lease on life’ for an algorithm that is little used in today’s
recognition engines. Indeed, past investigations [3] have shown
the significant reduction in error rate achievable by a DTW
based recognition system that incorporates properties of the

warp path.

Though not reported on here, further experiments [1] examined
other parameters of the experimental design. The individual
warp path parameters were all found to be of some utility in
extracting encoded speaker characteristics; though, when
considered alone, only two showed a performance equivalent to
the DTW distance, namely the number of horizontal transitions,
and the d-distance. However, as seen above, a weighted sum of
those parameters appears (at least for the current problem) to be
significantly superior to the conventional distance.

Similarly, speaker gender discrimination experiments [1] were
carried out. As expected, static measures of fundamental
frequency were the strongest discriminators. However all four
prosodic parameters encoded some gender specific information
and even after normalisation of parameters into the range 0—1,
speaker gender could be discriminated at over 77%.
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