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ABSTRACT

This study presents a new approach for robust speech ac-
tivity detection (SAD). Our framework is based on HMM
recognition of speech versus silence. We model speech as
one of fourteen large phone classes whereas silence is repre-
sented as a separate model. Individual test utterances are
concatenated to simulate read continuous speech for test-
ing. The HMM-based algorithm is compared to both an
energy based, as well as speech enhancement based, SAD
algorithms for clean, 5 dB and 0 dB SNR levels under
white Gaussian noise (WGN), aircraft cockpit noise (AIR)
and automobile highway noise (HWY). We found that our
algorithm provides lower frame error rates than the other
two methods especially for HWY noise. Unlike other stud-
ies, we evaluate our algorithm on the core test set of the
standard TIMIT database. Hence, results can be used as
benchmarks to evaluate future systems.

1. INTRODUCTION

Speech activity detection (SAD) is one of the fundamental
issues in many speech processing tasks such as continu-
ous speech recognition and speech enhancement. Reliable
discrimination between speech and silence becomes very
difficult in the presence of noise. Robust SAD is required
for pre-recognition noise reduction and recognizer model
adaptation.

There are a number of approaches previously used for SAD.
One approach is based on energy and it’s derivatives [2].
Although energy based algorithms work reasonably well for
clean speech, their performance degrades rapidly as SNR
levels decrease. In [8], a word boundary detection algo-
rithm is developed for isolated word recognition which does
not address the problems encountered in spontaneous and
continuous speech recognition, as there is typically no sin-
gle beginning and end point, in continuous speech. Other
endpoint detectors have been proposed based on energy for
isolated word recognition. In [1], an optimized strategy for
finding endpoints using a three-pass approach is proposed
in which energy pulses were located, edited, and endpoint
pairs scored in order of most likely candidates. However
while it performs well for isolated utterances at SNRs of 30
dB or greater, it fails considerably at lower SNRs. In [9],
Lamel’s approach was modified to include delta energy be-
sides energy as features, with speech and noise modeled us-
ing two HMMSs. This method is also used for word bound-
ary detection where training and testing data were single
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digits embedded in background noise. However the perfor-
mance was not validated on noisy or continuous speech.

In [4], SAD is formulated in the framework of model-based
speech enhancement. However, this approach is both com-
plex and computationally expensive. The testing set was
composed of only 2400 frames of speech which can be ob-
tained from 8-10 TIMIT sentences. The performance of
the algorithm has not been validated on a larger data
set. We observed that detection rates vary considerably
among sentence sets. For example while one set of sen-
tences (amounting to 2374 frames) achieved 1.3% total er-
ror rate (false alarm + miss), another set with a similar
frame count achieved as high as 8.6% frame error rate.

One common theme of these previously proposed SAD al-
gorithms is the lack of a standard evaluation test database.
Generally speaking, it may not be difficult to find single or
small sentence sets which gives artificially low error rates.
The literature lacks a benchmark study for which new sys-
tems can be evaluated against. This study establishes the
performance of SAD on a well defined core test set.

In this paper we propose a solution to SAD based on
broad class phone recognition where further performance
improvements can be gained by extending to context inde-
pendent and context dependent phone recognition based
SAD at the expense of increases in computational com-
plexity of the algorithm. Our approach is described in the
next section. Furthermore, in order to investigate the via-
bility of our system, we use the standard TIMIT database
where test sentences are concatenated into blocks of four
sentences to simulate continuous read speech. We compare
our system to modified energy based SAD and as well as
speech enhancement based SAD algorithms in the presence
of WGN, AIR and HWY noises.

The rest of the paper is organized as follows. In the next
section we describe our system for SAD. In Sec. 3 we de-
scribe the experimental evaluations and results obtained
from various SAD systems. Next, we discuss some of the
issues and compare our system with other algorithms. Fi-
nally, in Sec. 5 we summarize results and point to possible
future work for further improvement.

2. ALGORITHM DESCRIPTION

The SAD problem can be formulated as a signal detec-
tion problem. S denotes the observation vectors for si-
lence and S; denotes the observation vectors for the "
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Figure 1: Block diagram for SAD.

speech unit in the feature space. Under the noise-free con-
dition 1 denotes the hypothesis that the observation vec-
tor sequence X = {xi,x2,...,xr}, which is assumed to be
Gaussian random vector, belongs to one of the N speech
units. (¢: 1...N), whereas Ho denotes that it belongs to
silence. The underlying density under each hypothesis is
assumed to have a mixture of multi-D Gaussian densities.

Ho: X = 8o
Hi: X =8, i=1...N (1)

Equivalently the same decision criteria can be established
in terms of speech versus silence models. An observation
vector sequence X can be classified as one of the two classes
of HMMSs Ao and A;. The conditional probabilities P(X]|Xo)
and P(X|)\;) are calculated and the model resulting in the
highest likelihood is selected (assuming equal a priors prob-
abilities).

Choose  Xo, P(X]|Xo) > argmax P(X|\;)
1N

Choose  )X;, otherwise (2)

In the presence of noise, the observation vector sequence
X is transformed to X which has a different pdf than X.
In order to use the above decision criteria, the models Ao
and X; should be transformed in such a way so that they
are able to model the underlying distribution of X.

X = X
Ao = ):o
A = Xz (3)

Parallel model combination (PMC) can be used to trans-
form noise free models to noisy models while retaining the
likelihood ratio framework. The new decision rule is given
below:

Choose  Xo, P(X|Xo) > argmax P(X|X;)
i:1...N

Choose  Xi, otherwise 4)

Here, speech is modeled as a set of units and silence is a
separate single unit. In this respect the problem is sim-

ilar to a keyword spotting problem where speech units
are keywords and silence is a garbage model. Although
speech units are defined as one of the fourteen broad phone
classes, they can be extended to individual context depen-
dent/independent phone units for further improvement in
performance.

The general framework of the algorithm is given in Fig. 1.
The dotted blocks shown in Fig. 1 are optional processing
steps which can be included. We assumed that speech is
proceeded by a very short segment of silence from which
the initial noise estimate is computed. Mel-frequency cep-
stral parameters are used in the feature extraction block.
From the noise features, an estimate of the noise mean
and covariance vectors are computed. These estimates are
submitted to the Parallel Model Combination (PMC)[6]
block which is used to transform the noise-free model pdfs
to the noise-corrupted pdfs (i.e., A; = Xi. Viterbi based
recognition is used in the recognition block. All recognized
speech units are folded into an overall speech class in the
post-folding block. Confusions among speech models do
not effect final speech/silence decision due to post-folding.
A median filter of length 11 has been used to smooth the
output of post-folding. This prevents frame-to-frame tog-
gling among speech and silence states. In our simulations,
since the noise is not varying over time we disable the noise
update block, and used the initial noise estimate during the
entire test scenario.

2.1 Broad Class Phone Recognition Based SAD

We consider speech as one of the following 14 broad
phone classes: mnasals, unvoiced fricatives, woiced frica-
tives, affricates, unvoiced stops, voiced stops, u/v whispers,
front-vowels, mid-vowels, back-vowels, schwa-vowels, diph-
thongs, liquid and glides. Silence is considered as a sepa-
rate class which is composed of {epi, pau, ¢, gcl} . The 61
TIMIT phones are folded into one of the above classes. The
Viterbi algorithm is used for recognition, with the broad-
class phone recognition output folded into either speech or



silence. The feature vector is composed of 12 static, 12
delta, energy, delta energy. The zeroth cepstral param-
eter is appended to the feature vector to facilitate PMC
compensation. Each of the broad classes as well as silence
is modeled with 3 state left-to-right, 32 mixture HMMs.
Since only 15 HMM models are used to perform recogni-
tion, the computational complexity is small compared to
any typical speech enhancement schemes. A more complex
recognition based SAD system would be based on context
independent phone recognition. The best system is based
on gender and context dependent phone recognition which
is more complex than the first two systems. However the
performance is expected to increase as more prior knowl-
edge of the speech is taken into account.

2.1 Energy and Speech Enhancement based SAD

There are two other main approaches used in the past
for SAD. The first is based on energy detection whereas
the second is based on speech enhancement. There are a
number of energy based SAD algorithms in the literature
2, 1, 9, 8, 4. We used [2] for noise-free conditions and
modified the same algorithm in a noise adaptive manner
for noisy simulations. The algorithm proposed in [2] has
two empirical thresholds which are functions of silence en-
ergy. In our simulations we optimized these thresholds for
minimum error rate. For noisy cases the first ten frames
are assumed to be noise alone. The mean estimate of noise
energy is computed from the first ten frames. The utter-
ance energy contour is normalized by subtracting the noise
energy estimate in pointwise fashion. The same threshold
setting is used for noisy conditions after normalization.

We also implemented a speech enhancement based SAD.
Noisy speech is first enhanced by using the constrained
iterative Wiener filter (Auto-LSP) approach [3]. This al-
gorithm is based upon a two-step maximum a posterior:
(MAP) estimation of the all-pole speech parameters and
noise-free speech. In the first step, a MAP estimation of
the clean speech is obtained from the noisy input speech
(via Wiener filtering). In the second step, MAP estimation
is used to produce the all-pole model parameters given
the previous speech estimate. In between MAP estima-
tion steps, spectral constraints are applied in order to (i)
ensure stability of the all-pole model, (ii) to ensure that
it possesses speech-like characteristics, and (iii) to pro-
vide frame-to-frame continuity in vocal tract characteris-
tics. Inter-frame constraints are applied to the Line Spec-
trum Pair (LSP) parameters while intra-frame constraints
are applied across iterations to the autocorrelation lag se-
quence. After enhancement, energy based detection is ap-
plied on the enhanced speech where an optimal threshold
is selected for minimum frame error rate.

2.3 Parallel Model Combination (PMC)

We have used parallel model combination (PMC) [6] to
update our HMM models in noisy conditions. The idea
behind PMC is to adapt continuous density HMMs trained
on clean cepstral speech data to make it more robust to
noise. Given a segment of the noise itself, PMC combines
the parameters of the corresponding pairs of speech and
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Figure 2: (a) clean speech, (b) noisy speech (0 dB high-
way noise), (¢) enhanced speech, (d) energy-based SAD, (e)
Speech enhancement based SAD, (f) Broad-Class recognition
based SAD, (g) reference transciption.

noise states to yield compensated sets of parameters. A
thorough description of this technique can be found in the
literature [7]. Although both static and delta parameter
compensation are possible, we use only static parameter
compensation which resulted in satisfactory performance.

3. EVALUATIONS

The SAD algorithms are evaluated on the clean (8kHz sam-
pled) TIMIT core test set which inherently has 35 dB SNR.
The models are estimated from data in the training set of
TIMIT. The core test set of TIMIT is used for evaluation.
Core test set is composed of 192 sentences contributed
by 16 male and 8 female speakers. The testing data re-
sults in 57,700 frames to classify with a frame length of 20
msec and skip rate of 10 msec. The performance is estab-
lished based on frame level error rate. Three types of noise
sources are used for noisy simulations: white Gausssian
(WGN), aircraft cockpit (AIR) and automobile highway
(HWY) at 5 dB and 0 dB SNRs. A complete description
of noise types can be found in [5]. In Fig. 2, a typi-
cal example of clean speech, noigsy speech and enhanced
speech is shown respectively in the first three plots. The
next portion of the figure shows the decision using energy
based SAD, speech enhancement based SAD and broad
phone-class based SAD, respectively. The last graph shows
the reference speech/silence regions of the speech. Here 1
denotes speech and 0 denotes silence. The speech file is
obtained by concatenating four sentences which simulates
read continuous speech. As seen in the plot, broad phone-
class SAD closely traces the speech/silence portions of the
speech whereas the other two algorithms make errors espe-
cially in the transition regions where many silence deletions
and insertions occur.

3.1 Noise Free Simulations

In the noise-free case, broad phone-class recognition based
SAD and energy based SAD are used. The results are
shown in Table 1. The first algorithm achieved an error
rate of 5.8% while the energy based SAD achieved 7.6%.



Speech Activity Detection (SAD) for (8kHz) TIMIT core test set
Total silence frames: 9083, Total speech frames: 48617, Total frames: 57700

ALG. 1: Broad Class + PMC ALG. 2: Energy Based ALG. 3: SE + Energy Based

Noise | SNR (dB) FA [ Miss | Corr | P(e) (%) FA Miss Corr [ P{e)(%) FA Miss | Corr [ P(e)(%)
WGN 5 5058 2496 50146 13.1 2815 7483 47402 17.9 4661 4198 | 48841 15.4
0 4923 4050 | 48709 15.6 6373 6001 45327 21.4 4400 | 5828 | 47472 17.7
AIR 5 3002 3562 52411 11.1 1439 8157 48104 16.6 5688 | 2799 | 49213 14.7
0 3399 5413 48888 15.3 1066 11374 | 45260 21.6 5507 | 3442 | 48751 15.5
HWY 5 2167 1789 53744 6.9 2267 6375 49058 14.0 1848 | 6641 49211 14.7
0 1576 3624 | 52500 9.0 1609 8448 47643 17.4 1545 | 7700 | 48455 16.0

[ Clean | [ 2924 | 405 [ 54371 | 5.8 [ 2049 | 2315 | 53336 | 76 [ - | - [ - [ - |

Table 1: Detection Errors, FA: false alarm, Corr: correct, P(e): probability of error, P(e)=P(false alarm) + P(miss)

The empirical thresholds for energy based detector are op-
timized over the testing set allowing an artificially low error
rate for clean speech. For clean speech, many of the errors
are made in transition frames, which contain speech as well
as silence.

3.1 Noisy Simulations

In all noisy simulations, broad phone-class recognition out-
performed speech enhancement based SAD, which in turn
outperformed energy based SAD. We observed that broad
phone-class based SAD is especially well suited to HWY
noise, even at 5dB SNR the error rate is only 1% higher
than the clean condition. On average broad phone-class
based SAD outperformed speech enhencement based SAD
and energy based SAD by 2.2% and 5.3% respectively for
white Gaussian noise. The average difference is again in
favor of our algorithm by 1.9% and 5.9% for AIR noise.
Finally, our algorithm outperformed the other methods by
7.4% and 8.3% for HWY noise.

4. DISCUSSION

Although it is a standard database, one of the issues
that comes up when TIMIT is used for SAD is the ill-
proportioned amount of speech versus silence data. In the
test set there are 9083 frames are silence compared to 48617
frames of speech. This imbalance might lead to a bias in
performance. If the entire test set is labeled as speech
the error rate will be 15.8%. However higher error rates
can be obtained as neither very small false alarm nor miss
are allowed. Therefore neither total number of misses nor
the total number of false alarms should be small. Rather,
their value should be comparable for accurate performance
assessment.

Although PMC can compensate static and dynamic pa-
rameters, only static parameters were compensated. In
[7] it was shown that compensating delta and delta-delta
in addition to static parameters halves the relative error
rate for continous speech recognition. We expect a similar

performance improvement would also to translate to our
SAD.

We can further improve the detection rates by using
context-dependent phone recognition system. Context in-
dependent phone recognition based SAD is feasible since
only fourty six models must be compensated. However
context-dependent phone recognition based SAD would
also be computationally expensive.

5. CONCLUSIONS AND FUTURE WORK

The problem of speech activity detection is addressed by
formulating a broad phone-class recognition system. The
detector is shown to perform well even at low SNRs. It’s
performance is compared to a modified-energy and speech
enhancement based detectors. While providing lower error
rates than the other two methods for all noise types, it is
especially well suited for automobile highway (HWY) noise
resulting in half the error rate of the other two methods.
This study can be used as a benchmark for future systems
as it used the core TIMIT set for simulations. Currently we
are working on two new algorithms which will be integrated
into our system. The first is normalized likelihood ratio
scoring which is intended to reduce the number of false
alarms. The second is to build boundary-HMMs for robust
decision on speech-noise boundaries.
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