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ABSTRACT

In concatenative synthesis, new utterances are created by
concatenating segments (units) of recorded speech. When
the segments are extracted from a large speech corpus, a
key 1ssue 1s to select segments that will sound natural in a
given phonetic context. Distance measures are often used
for this task. However, little is known about the percep-
tual relevance of these measures. More insight into the
relationship between computed distances and perceptual
differences is needed to develop accurate unit selection al-
gorithms, and to improve the quality of the resulting com-
puter speech. In this paper, we develop a perceptual test to
measure subtle phonetic differences between speech units.
We use the perceptual data to evaluate several popular dis-
tance measures. The results show that distance measures
that use frequency warping perform better than those that
do not, and minimal extra advantage is gained by using
weighted distances or delta features.

1 INTRODUCTION

To produce high quality concatenated speech, it is im-
portant to combine segments with appropriate coarticu-
lation or phonetic “coloring”. Many concatenative syn-
thesizers store exactly one segment for each phonetic con-
text (e.g. diphones). Recently, researchers have addressed
the challenge of selecting segments from any database of
naturally spoken text. Several unit selection algorithms
that rely on objective distance measures have been pro-
posed [2, 3, 8].

In speech recognition, distance measures have been used
more widely than in speech synthesis. Recognition algo-
rithms based on template matching, using Dynamic Time
Warping (DTW), applied distance measures directly. Cur-
rently, more research is aimed at improving feature repre-
sentations of speech, which are the basic building block of
distance measures and are used as a front-end to Hidden
Markov or Neural Network based recognizers. Distance
measures are also important in speech coding, for use in
vector quantization and as objective measures of speech
quality [14].

Relatively few studies have attempted a large scale com-
parison of distance measures. Two reasons can be found for
this. First, a distance measure is the result of many design
choices, and to investigate all possible combinations is an
enormous task. Second, often the only criterion to decide
whether a certain distance measure is better than another,
is its performance as part of a speech recognizer, coder, or
synthesizer. Conclusions reached on performance of a dis-
tance measure within a certain algorithm or application,
may not be valid in a different setting.

An early study comparing several distance measures was
conducted by Gray and Markel [5]. They investigated mea-
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sures based on spectral and cepstral coefficients, log area
ratios, and the Itakura-Saito distance. They showed that
the cepstral distance with 10 to 20 coefficients is an effi-
cient estimation of the log spectral distance, and proved
other relations between the measures both in theory and
experimentally. Nocerino, Rabiner, and Klatt [13] stud-
ied the performance of several feature representations in a
DTW recognizer. They concluded that warped frequency
scales (such as mel scale and bark scale) did not improve
performance. The opposite was found by Hermansky and
Junqua [7], and Krishnan and Rao [11], in different recog-
nizers. Krishnan and Rao also found promising results for
features based on line spectral frequencies.

Such comparative studies give an insight into the range
of distance measures that can be designed. They also pro-
vide evidence that certain feature representations capture
more of the variability in speech that is relevant in recogni-
tion. However, for the purpose of unit selection in speech
synthesis, we are interested in the relation between com-
puted distance measures and human perception. We were
able to find surprisingly little research on this topic, al-
though many researchers [5, 16] have pointed out its need.

An exception is the work by Quackenbush, Barnwell
and Clements [14]. In their book, “Objective Measures
of Speech Quality,” they study the perceptual effects of
several speech coding distortions, and investigate the po-
tential of a large number of distance measures to predict
the perceptual data. Among their conclusions, they report
a correlation of 0.7 between perceptual quality measures
and some of the best automatic measures. However, cod-
ing distortions have a different effect on the speech sig-
nal than allophonic variations. New research is needed to
study which measures best predict differences between al-
lophones. Also, a perceptual test must be designed that
is not aimed at judging overall quality of distorted speech,
but at specific measurements of phonetic changes.

The paper is organized as follows. In Section 2, we
describe a perceptual experiment. A database of speech
samples and associated perceptual distances is constructed.
In Section 3, we compare several frequently used distance
measures with the perceptual data. In conclusion, we dis-
cuss their merits for concatenative speech synthesis.

2 A PERCEPTUAL TEST FOR ALLOPHONIC
DIFFERENCES

2.1 Design

Each phoneme in a language can be realized as a continuum
of phonetic variations in natural speech. Such variations
are called allophones. For example, the /i/ in “tip” differs
from the /i/ in “tick”. Not only phonetic context, but
also lexical stress, mood of the speaker, speech rate, etc.
influence the realization of a phoneme.

We aim to measure the subtle perceptual differences be-
tween allophonic speech segments. A naive perceptual test
would consist of extracting samples of a phoneme from
different contexts, and playing the isolated sounds to a lis-



tener. It would be a strenuous task for a listener to judge
the differences between these samples. Not only are the
phoneme durations very short, but also the differences be-
come salient only when placed in a phonetic context.

In our test, listeners are instead presented with pairs of
words that are identical except for one segment. Segments
from different phonetic contexts are inserted, causing per-
ceptible differences in the pronunciations of the words. A
segment is set to be one half of a phoneme, which is the
basic unit of our concatenative synthesizer [12]. Figure 1
illustrates this process.

The number of phonetic contexts in English is very large,
and we can cover only a small fraction of the phonetic
spectrum in the perceptual test. Hence, we limit the sub-
stituted segments to three specific cases of vowels. These
cases are explained below. We expected that variations of
vowel segments would result in a relatively wide range of
perceptual differences, which would allow listeners to rate
them on a five-point scale (distances from 0 to 4). This
is similar to perceptual experiments with synthesized vow-
els, such as reported by Kewley-Port and Atal [9], and
Klatt [10].

2.2 The Test Database

Every word pair in the perceptual test consists of a refer-
ence word and a modified version of this word. The ref-
erence word 1s realized by a diphone synthesizer, which is
assumed to produce ‘correct’ allophonic variations. The
modified word differs by one half of a diphone, extracted
from a different phonetic context. The diphones are
joined pitch-synchronously, but without spectral smooth-
ing. Pitch contours and phoneme durations are identical
for both words. FEnergy differences between the original
segment and the substituted segment are not corrected, al-
though care was taken during recording of the diphones to
maintain equal vocal effort.

The test database contains 166 word pairs. The reference
words are mono-syllabic English words, chosen from three
categories. Category I consists of words that end in a nasal
(/n/, /m/ or /ng/). Category II contains words beginning
with a glide (/w/, /r/, /1/ or /y/). Category III consists of
words ending with a voiceless stop consonant (/p/, /t/, or
/k/). For each category, four reference words are chosen,
with central vowels /aa/, /ae/, /iy/ and /uw/, respectively.
These vowels correspond with distinct tongue positions,
and allow study of a large part of the vowel space.

Modified words are generated for each category. In
category I, the second half of the center vowel is substi-
tuted with vowel segments preceeding different nasals in
the database. For example, in the reference word “lamb”,
the second half of /ae/ is replaced by the second half of
/ae/ in “fan”. Yet another version for “lamb” is created
by inserting the second half of /ae/ from “sang”. For words
of category I, the first half of the vowel is replaced by in-
stances of that vowel following different glides. For words
of category III, segments are inserted that preceed any of

the plosives /p/, /b/, /t/, /d/, /k/, or /g/.

2.3 Procedure

There were fifteen participants in the perceptual test. For
each participant, the same word pairs were used, but the
order was randomized. Also the order of words within a
pair was decided at random. Care was taken to select only
native speakers of American English.

Participants were trained by listening to 25 random word
pairs before the test began. They were asked to rate the
differences between the word pairs on a five-point scale,
and could listen to the words an arbitrary number of times

/k/ /ae/ 1t/

K/ Jae) BT /p/

Sy

Figure 1. The pronunciation of a word is modified by
substituting an allophonic speech segment.

before making a decision. The interface permitted the lis-
teners to listen to the words individually, as well as in
sequence. Study of the responses showed that all listeners
had used the entire scale, except one subject, whose data
were rejected. All listeners agreed that judging small per-
ceptual differences was a difficult task, but felt that they
had been able to make consistent decisions after the initial
training.

As a validity check, we studied the responses for a group
of 38 control pairs, in which no segment was altered (i.e.
the words were identical). Almost all responses were 0 or
1 (on a scale from 0 to 4), 1.5 % of the responses were 2,
and 3 was selected once.

3 EVALUATION OF DISTANCE MEASURES

The experiment described in Section 2, measures the per-
ceptual effect of inserting certain allophones in a new con-
text. Our goal is to investigate the potential of objective
distance measures to predict these effects. Since the words
in a pair are identical except for one segment, only the ob-
jective distance between the original and the substituted
segment is used for the prediction. In general, the spectral
discontinuity between a newly inserted segment and the re-
mainder of the word also has a perceptual effect (i.e. con-
catenation cost). However, we chose the reference words
carefully, so that most inserted segments represent the sec-
ond half of a vowel, followed by a stop consonant (category
III, see Section 2.2), or a nasal stop (category I). Concate-
nation effects can be minimized in such cases [1]. For the
segments preceeded by a glide (category II), we neglect
concatenation effects, and investigate how well the percep-
tual changes can be predicted only by objective distances
between segments.

We define the perceptual distance between the words in
one pair as the average of the listeners’ responses for that
pair. Since only listeners that had used the full answer scale
were retained in the database, no further normalization of
listeners was undertaken. The correlation between objec-
tive distances and perceptual distances is used to evaluate
the objective measures. However, a simple correlation be-
tween perceptual and objective distances gives results close
to 0. When computed per vowel category, more meaning-
ful correlations are found. Note that for each category,
four types of segments were studied (corresponding to the
vowels faa/, /ae/, /iy/ and /uw/, see Section 2.2). Hence,
we divided the word pairs into twelve subgroups, corre-
sponding to each category and each vowel. The correla-
tion between objective and perceptual distances was com-
puted per subgroup, yielding 12 coefficients. These coeffi-
cients were then combined in a “population correlation,”



Linear | PLP | mel
FFT cepstra | 0.49 0.62 | 0.64
LPC cepstra | 0.48 0.61 | 0.64
LSF 0.34 0.57 0.58
log area 0.28 0.55 | 0.52
Ttakura 0.50 0.61 | 0.64

Table 1. Correlation between perceptual distances and ob-
jective measures based on different feature representations.

using Fischer’s transformation. The population correlation
is used as a measure of goodness for the objective distance
measures.

4 RESULTS

We report the correlations of several objective distance
measures with the perceptual distances, as defined above.
The distance measures fit in the following framework.
First, the raw speech signal, sampled at 16 kHz, is con-
verted into a stream of feature vectors (frames), extracted
at 5 millisecond intervals. Since segments may have differ-
ent durations®, resulting in an unequal number of frames,
the time scale of the second segment is adjusted linearly,
and new frames are calculated by interpolating the origi-
nal frames at the new extraction points. Distances between
corresponding frames can then be calculated. Finally, the
frame distances are combined into a global distance be-
tween segments.

4.1 Choice of Features

We studied five feature representations: FFT-based cep-
stra, LPC-based cepstra, line spectral frequencies (LSF),
log area ratios (LAR) and a symmetrized Itakura distance.

All but the FFT-based cepstra were computed via lin-
ear predictive coding (LPC) coeflicients. Hermansky [6]
proposed to compute LPC coefficients from a “perceptual
spectrum,” using the Bark scale and equal loudness pre-
emphasis. The analysis was called perceptual linear predic-
tion (PLP). On the other hand, current recognition systems
often employ mel cepstral coefficients, obtained by taking
the inverse FFT of a mel-warped spectrum. In our experi-
ments, we decided to compute the feature representations
in three different ways: (1) using the FFT amplitude spec-
trum, (2) using a perceptual spectrum as described in [6],
(3) using a mel-warped spectrum.

From Table 1 it can be seen that the PLP and mel scales
improve the correlation between objective measures and
the perceptual data. Mel based distances slightly outper-
form the PLP distances. However, the confidence bound-
aries of the correlations are approximately £0.05, due to
the limited amount of perceptual data. Hence the differ-
ences between PLP and mel distances are not statistically
significant (p > 0.84, two-sided). When we inspect Ta-
ble 1 columnwise, we see that the cepstral measures and
the Itakura distance perform best.

4.2 Weighted Distances
Cepstral Liftering

A weighted Euclidean distance can be used to measure
the distance between two feature vectors. Placing weights
on cepstral coefficients is called “liftering”.

Figure 2 summarizes experiments with an exponential
cepstral lifter, as described by Hermansky and Junqua [7].
The idea is to weight each cepstral coefficient ¢; with a

ISegments form part of vowels with equal duration,
but the duration of a segment within a phoneme can be
different.
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Figure 2. Effect of index weighting on correlation of dis-
tance measure with perceptual distances.

linear mel
Eucl | Mah | Eucl | Mah
cep | 0.48 0.53 0.64 0.64
Isf 0.34 0.50 0.58 0.57

Table 2. Evaluation of cepstrum and LSF with Euclidean
metric (left) and Mahalanobis metric(right). The value in
the table is the correlation of the distance measure with
the perceptual data.

factor 7%, where 7 is the index and s is a parameter. Her-
mansky and Junqua reported an optimal value of s = 0.6
for “regular” cepstral coefficients, which is confirmed by
our perceptual experiments. However, for PLP and mel
cepstra, only very small increases in the correlation coeffi-
cient can be noted.

Mahalanobis and Optimal Weighting

The Mahalanobis distance is based on weighting features
with the inverse of their variance. Features with low vari-
ance are boosted, and have a better chance of influencing
the total distance. For speech cepstra, index weighting
is an approximation of the Mahalanobis distance [5]. In
the general case, the Mahanalobis distance also involves
estimation of feature covariances. Because the covariances
cannot be estimated reliably from limited speech data, they
are usually ignored. This corresponds with assuming that
the features are uncorrelated.

In Table 2, we compare the Mahalanobis distances for
cepstra and LSF measures. The variances of the feature
vectors are calculated over the entire database. We find
that the Mahalanobis distance gives an improvement for
the linear frequency measures, but does not improve the
correlation for the mel based measures. However, we be-
lieve that with more speech data, more reliable variances
could be calculated for each vowel context, which could
improve the performance of the Mahalanobis distance.

Ultimately, the weights could be optimized with an it-
erative search. We have not been very successful in this
approach. For mel cepstra, the correlation can be max-
imized up to 0.68 starting from different initializations.
This is not a big increase. Moreover, the weights do not
form a pattern that can be easily interpreted. Our LSF fea-
ture representation consisted of the sums and differences of
spectral pairs, which can be interpreted as spectral poles
and bandwidths [15]. The optimized weights seemed to
favor the middle poles of the LSF representation, and to



baseline | only A | combined
mel cepstra | 0.64 0.64 0.66
mel LSF 0.58 0.53 0.59

Table 3. Correlations for mel cepstra and for mel LSF. The
first column gives the baseline, the second column shows
the correlation for delta features only, and the third column
gives the result for a combined measure

attach less importance to the bandwidths.

Teme Scale Weighting

Several frame distances need to be combined in order to
obtain a distance between segments. In DTW algorithms,
frame distances were sometimes weighted according to the
amount of time warping needed. In a distance measure
developed by Sondhi and Ghitza [4], frames are weighted
more heavily towards phoneme boundaries.

In the results reported so far, we defined the distance
between two segments as the average of their frame dis-
tances. Another choice is to take the maximum frame dis-
tance. This 1s motivated by the intuition that peak dif-
ferences may perceptually be more important than global
differences. However, from experiments with mel cepstra,
mel LSF and mel Itakura distances, we concluded that tak-
ing the maximum frame distance did not lead to objective
measures that correlated better with perceptual distances.

4.3 Delta Features

The features explored so far reflect the static frequency
characteristics of speech at a certain point in time. Delta
features are estimations of the time derivatives of static
features, thus capturing more of the speech dynamics.

In Table 3, we summarize experiments with distances
based on mel cepstra and mel LSF. Using delta features
only, we find correlations that approximate results with
regular features. When the delta features are combined
with the original features, a small increase in correlation
is found. Since the delta features are much smaller than
the original coefficients, the average amplitude of both fea-
ture sets was normalized. We also trained an additional
weight to optimize the contribution of delta features in
the frame distance, but this improved the correlations only
marginally.

It 1s disappointing that although the feature representa-
tion is doubled in size, the effect on the distance measure
is quite small. Further research is needed to incorporate
delta features more successfully into distance measures.

5 CONCLUSIONS

We have developed a test to measure perceptual differences
between allophones. The collected data have allowed us
to study the perceptual relevance of distance measures for
speech. We found mel-based cepstral and Itakura distances
to be the most powerful, with minimal added benefit found
by utilizing weighted distances or delta features.

The results of our study give insights into the use of
distance measures for unit selection. We have provided a
perceptual validation of distance measures, showing that
a reasonable (0.66) correlation with perceptual distances
exists. On the other hand, this correlation is not high
enough to consider distance measures as reliable predic-
tors of perceptual differences. This was confirmed in a
classification experiment, where we used the best objective
measure to decide whether the words in a pair were either
similar (perceptual score < 1) or different (perceptual score
> 2). Classification errors ranged between 20% and 50%,
for various decision points.

In this paper, we have evaluated some of the better
known distance measures. It is a challenge for future work
to study other measures, and to develop new ideas to im-
prove the accuracy of objective distance measures.
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