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ABSTRACT

Parametric trajectory models explicitly represent the tem-
poral evolution of the speech features as a Gaussian process
with time-varying parameters. HMMs are a special case of
such models, one in which the trajectory constraints in the
speech segment are ignored by the assumption of condi-
tional independence across frames within the segment. In
this paper, we investigate in detail some extensions to our
trajectory modeling approach aimed at improving LVCSR
performance: (i) improved modeling of mixtures of trajec-
tories via better initialization, (ii) modeling of context de-
pendence, and (iii) improved segment boundaries by means
of search. We will present results in terms of both phone
classification and recognition accuracy on the Switchboard
corpus.

1. Introduction

One limitation of the hidden Markov models, which are the
most widely used models to represent speech, is the model-
ing assumption that features are conditionally independent
given the state sequence. In our previous paper [1], we
proposed the parametric trajectory model which exploits
the time dependence of speech frames by representing the
speech features of a speech segment as Gaussian mixtures
with time-varying parameters. We have shown the effec-
tiveness of this model in a vowel classification task on the
Timit database. The same approach can also be applied for
large vocabulary continuous speech recognition (LVCSR).

In this paper, we investigate in detail three extensions of
the mixture trajectory model approach aimed at improving
LVCSR performance: (i) improved modeling of mixtures
of trajectories, (ii) modeling of context-dependent phones,
and (iii) improved segment boundaries via a dynamic
programming search strategy within the n-best rescoring
framework [2].

2. Polynomial Trajectory Model

Given a speech segment with a duration of NV frames, where
each frame is represented by a D dimensional feature vec-
tor, the segment can be expressed in matrix notation as:

C1,1 C1,D
C2,1 C2,D

c=| . . =[¢ ... ¢,] O
CN,1 CN,D

and modeled, as:

C=ZB+E (2)
where Z is a N x R design matrix that specifies the type
of model to use, B is a R x D trajectory parameter ma-
trix, and E is a residual error matrix. R is the number of
parameters in the trajectory model: R = 1 for constant,
R =2 for linear, and R = 3 for quadratic trajectories.

Given the segment model in Equation 2, the next step is to
solve for the model parameters, which we can do on each
phone separately. Assuming that the errors are indepen-
dent and identically distributed (normal with covariance
%), the Maximum Likelihood (ML) estimate of the tra-
jectory parameter matrix, ﬁk, is given by the linear least
squares estimate:

B = [Z4Z] ™' Z4C, (3)

for a segment k with data matrix Cg, and design matrix
Zy.

With By estimated, the residual error covariance matrix
for the segment, 3y, is given by: ) R
$ B.E, (Cr — ZxB4) (Ck — ZxBy) )
TN, N ’

where Ny is the number of frames in segment k.

The  likelihood of an  observed segment k,
L(B4,3%|Bm, ) with estimated trajectory mean
3k and covariance f]k given the model mean B, and
model covariance 3, can be expressed as:

L(Bi, 2k[Bm,Sm) = W(klm) = ()
DN N, A
T S|” 7 - exp (—%tr [E;,IE,C]) :

(2m)”
exp (—%tr [Z (B — Bn)3;, (B — Bm)’z;]) .

The above formulation can be extended to estimate param-
eters of an M-component mixture model. These trajectory
parameters include the means and covariance of the mix-
ture components 3m, 3 and the mixture weights denoted
by p(m) for 1 < m < M. The likelihood of a segment k,
1 <k < K,in a given set of K segments, can be expressed

as:
M

LBk, 5) = (k) = > p(m)L(Bk, Sk[Bm, Bm).
The ML solution can be found using the Expectation-

Maximization algorithm (EM) resulting in the following
reestimating equations.



1. Prior probability for model m:
K
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2. Trajectory parameter for model m:

B! = [Epi(mlk)zkzk] [Epi(mm)zkzkﬁk]
k=1 k=1
(7)

3. Covariance matrix for model m:

3" 5 (mlk) (Ch — ZuBl)' (Ch — ZeBi,)

i _ k=1
Yo = =
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k=1
(8)
4. Likelihood I*(k|m) using Equation 5
5. Posterior probability of the model given segment.
i I (k|m)p*(m
P (mk) = PN
>t Pk )P (5)

3. Improvements for LVCSR

We investigated three different areas to improve the trajec-
tory models for LVCSR. First, we compared three different
clustering methods which can be used to initialize the mix-
ture models. Second, we extended the model to represent
context-dependent phones. Third, we developed a search
algorithm to improve phonetic segment boundaries in both
training and recognition.

3.1.

Good initial models are essential to the estimation of mix-
tures. In our previous paper [3], we described the agglom-
erative clustering approach where segments are clustered
based on pair-wise likelihood ratio distances between seg-
ments. Computing the pair-wise distances is expensive
(O(N?) where N is the number of segments for a phone).
This limits its extension to large amount of training data.
It is also difficult to prune the dendrogram to form clusters,
for which heuristic thresholds are required.

Initializing the Mixtures

In this paper, we introduce two approaches that are varia-
tions of the k-means algorithm and compare them with the
agglomerative approach. The k-means algorithm can be
described by its three major steps: 1) initial clustering, 2)
estimation of centroids, and 3) partitioning the data given
the centroids. In the first approach, k-means-I, the data
is modeled by parametric trajectories. In the second ap-
proach, k-means-II, the data is modeled by non-parametric
trajectories.

3.2.

The segments are modeled using parametric trajectory
models which is consistent with what is used in the lat-
ter EM training. In fact, this k-means clustering approach
is very similar to EM. To avoid under-trained Gaussians,

K-means-I

clusters containing less than a minimum number of seg-
ments (10) are merged to the closest cluster, while the
cluster with the largest variance is split into two clusters.

Initialization The partitioning of the data is initialized
based on the segments’ duration. This is motivated by the
fact that segments with different durations may indicate
different speaking rates or pronunciations and their trajec-
tories can be quite different.

Estimating a centroid The centroids are estimated us-
ing Equations 6-8.

Re-partitioning of data Re-partitioning of the data is
done based on the posterior probability as defined in Equa-
tion 9. Instead of computing the complete likelihood, only
the trajectory fit is considered in the likelihood computa-
tions. Specifically, Equation 5 is modified as

L(B, 2k[Bm, ) = (10)

exp (—%tr [Z (B — Bn)S' (B — Bm)’z;]) .

Equation 9 is modified to make a hard decision.

it1 _ | 1 i km)p'(m) > I(klm)p (), Vagm
p (mlk) _{ 0 otherwise

(11)
3.3.

Instead of using parametric trajectories, this approach uses
non-parametric trajectories formed by linear interpolating
the segments to the same length. Instead of using likeli-
hood, a weighted Euclidean distance is used.

K-means-11

Initialization Multiple random initial centroids are se-
lected and are normalized to a fixed length M by means
of linear interpolation. M is selected as a fixed percentile
of the segment durations. Denote £(z;|M) as the interpo-
lated version of the segment x; of length n; to a new length
M. The k-th frame of the interpolated segment L(x;|M)
is expressed as,
L(xs|M)[k] = (1 — @) x x5[k] + a x ik + 1],

k= {1\164—11 X (ni—1)+1J,
% X (ni—1)+1—k,

and |z denotes the integral value of z.

where

=

Estimating centroids A new centroid ¢; is computed as
the arithmetic mean of interpolated segments,
Z:L‘iec]‘ L:(.'II7,|M)

G = ——"T—,

Z:EiECJ‘ 1

and the duration of the centroid, d; is the average duration
of all the segments.

Re-partitioning of data Segments are assigned to the
nearest centroid measured by a distance metric d(xs,c;)
that takes into account the the Euclidean distance and the
duration difference between the interpolated segment and
the centroid. Denoting the segment and centroid durations
as n; and dj, this distance is defined as,
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where w is a pre-defined weight which is selected empiri-
cally and is the same for all phones.

3.4.

Context-dependent models, such as triphone models, have
long been shown to improve speech recognition perfor-
mance in HMM based recognizer. An important issue
with context-dependent models is the sharing of param-
eters among different models to avoid insufficient training.
Our approach to parameter sharing in triphone modeling
is to allow all triphones with the same middle phone to
share the same set of Gaussian mixture components but
with different mixture weights. This method of parame-
ters sharing is also used in the Byblos recognizer [4], and
is called phonetically tied mixture model (PTM). The con-
text dependent model training involves the following steps:

Context Dependent Modeling

1. Estimate the context-independent models and use
them as the 0-th iteration context dependent model.
That is, pf(m) = pm), BY, = B,, and 29, = 3,,,
where 1 < m < M and ¢ refers to the triphone. Since
all triphone shares the same B and 3, they are not
index by the triphone ¢.

2. At each iteration, re-compute the model parameters
using Equation 9- 8 with p(m) replaced by pi(m) and
the posterior probability pém|k) by pi(m).

The use of context dependent model also raises the ques-
tion about back-off in the case of un-observed triphones.
In our current implementation, un-observed triphones back
off left and right context models and if neither have been
observed, we back off to the context-independent models.

3.5.

To compute the likelihood using the parametric trajectory
model, segment boundaries are needed. Because the tra-
jectory representation models all the frames in a segment
jointly, error in segment boundaries affect the fit for the
whole segment. Ideally, one should search for the best seg-
mentation among all possibilities but that is computation-
ally expensive. Instead, we devise a simple search algo-
rithm that allows the segmentation to vary up to d frames
from the nomial starting boundaries such as the Viterbi
alignment generated by the HMM recognizer. This search
algorithm can also be used iteratively to improve the the
training segmentation and the n-best segmentation.

Better Segment Boundaries

For a segment z; of phone tz, denote zx(a,b) as the vari-
ation of k that begins a frames earlier and ends b frames
later where —d < a,b < d. Thus, z; = x4(0,0). The
search process involves two steps: 1) computes the likeli-
hoods of p(zi(a,b)|tr Vi,—d<ap<d, and 2) uses dynamic
programming to search for the best segmentation. In step
(1), we potentially need to evaluate (2d+1)? likelihoods for
each segment. In reality, the number of unique segments
is much fewer because we can remove ill-formed segments,
such as segments with less than 3 frames in a quadratic
model. Furthermore, in n-best rescoring, a segment varia-
tion in one n-best hypothesis frequently overlaps with an-

+w||n; —dy]l2,

Model configuration phone class. acc.
non-mixture gender indpt. 35.1%
non-mixture gender dept. 38.9%

32 mixture, gender dept. agglo. 53.1%
32 mixture, gender dept. k-means-I 51.0%
32 mixture, gender dept. k-means-11 53.8%
256 mixture, gender dept. k-means-II 56.0%
32 mixture, context dept k-means-II 54.1%

Table 1: Results of phone classification

other variation in another n-best hypothesis and hence,
caching computed segment scores significantly speeds up
computation. In step (2), we uses dynamic programming
search to find the best path among all the valid paths.
This is achieved by imposing constraints in the transitions
between segments that restricting that all frames are ac-
counted for and no frame is represented for two different
segments.

4. Experiments

We trained our models using 20 hours of speech from the
Switchboard Corpus. Our test consists of 7 switchboard
conversations that contain 35 minutes of speech. Phonetic
segmentation for training and test data are generated by
the Byblos [4] recognizer. We use the 14 cepstral coeffi-
cients, the normalized energy, and their first and second or-
der differences. In all experiments reported here, quadratic
trajectories and diagonal covariances are used.

4.1.

We performed a series of phone classification experiments
that differentiates between 47 phones (no silence or non-
speech). Phone classification is a good way of measuring
model improvement independent of the segmentation is-
sues. As shown in Table 1, we begin with a primitive
gender-independent model without mixture. By using gen-
der dependent models, we can improve the phone classifica-
tion by 3%. The use of mixture models with a maximum
of 32 components gave a significant gain, improving the
phone classification accuracy by more than 10%. We com-
pared the three clustering methods and found them quite
comparable. The k-means- IT method has a slight perfor-
mance advantage and is more computationally efficient as
compare to the dendrogram approach.

Phone Classification

We improved the model further by increasing the number
of mixture components from 32 to 256 as well as moving
to context dependent models. Adding more mixture com-
ponents helps but the gain is not as dramatic as going
from non-mixture to 32 mixtures. The context dependent
models differed from the context independent models in
having context dependent mixture weights in training and
test. In phone classification, since the context information
is not known in test, context-independent weights are used.
However, because context information was used during EM
training of the Gaussian components, the resulting model
is slightly better and improved phone classification slightly.



Experiments traj. | traj + HMM
baseline (HMM) - 42.4%
random 46.0% -
256 mix. context dept. model | 44.5% 42.4%
+ re-segment tst only 44.9% 42.3%
re-segment trn only 44.5% 42.1%
re-segment trn & test 44.8% 42.2%

Table 2: Results of recognition

4.2. Recognition

Recognition is done in the n-best rescoring framework. The
parametric trajectory models were used to re-order the n-
best generated by the Byblos system. This n-best rescor-
ing paradigm [2] can be considered a very limited search
around the neighborhood of the HMM’s one best answer.
It searches for the best linear combination of a number of
other scores. In our case, these scores includes the HMM
acoustic likelihood, language model likelihood, number of
words, phones and silences and the trajectory model score.
For each test sentence, 1000 n-best hypothesis are gen-
erated by the Byblos system using the phonetically tied
mixture (PTM) model. This HMM model is quite similar
to the context dependent trajectory model in that both 1)
share approximately the same number of diagonal covari-
ance mixture components (256), 2) use the same parameter
sharing mechanism (PTM), 3) train with the same data,
and 4) use gender-dependent models. The models are ini-
tialized by k-means-II method.

In Table 2, we tabulate the results of rescoring n-best
with and without the HMM acoustic likelihood. We also
rescored using a random model where we replace the tra-
jectory score with a randomly generated score. The ef-
fect of searching better phonetic boundaries by allowing
the boundaries to vary 1 frame from the HMM alignment
(denoted re-segment in Table 2) is inconclusive. While it
seems to help the performance when combined with the
HMM scores, it degrades the rescoring performance with-
out HMM scores. Re-segmenting the phone boundaries in
training helps the rescoring with HMM further, resulting in
an 0.3% absolute improvement over using the HMM alone.

4.3.

The results in Table 1 shows that we can progressively im-
prove the model by being more specific and adding more
parameters. Comparing the three clustering methods, the
agglomerative based approach is quite comparable with the
k-means-II method but its computational requirement is
much bigger. In fact, we have to subsample some of the
phones that have more than 5000 training segments. The
k-means-I method is not performing as well probably be-
cause the duration based initialization is too restrictive.
We plan to continue to pursue this approach in future by
using either random initialization or partition the duration
based on counts. The effect of using the context-dependent
model is small because context information is not used in
phone classification.

Discussion

The performance of rescoring n-best using the random
score is not terrible because the n-best is a in effect a small

search space around the HMM 1-best answer. Further-
more, the optimization process uses additional scores such
as language model scores that can provide a powerful indi-
cation for the good answers among the restricted set of n-
best. Comparing the n-best rescoring performance of using
the trajectory model to the random score, the trajectory
models are about 2.0% better. This shows that the trajec-
tory model is providing useful knowledge. Comparing the
trajectory model with the HMM, the trajectory model is
performing about 2% worse by itself.

There are several issues that we plan to pursue. The first
issue is further improvements in the context dependent
model. We notice that the the contribution of the mix-
ture weights in trajectory model is much smaller than in
HMM making the context dependent model quite weak. In
HMM, the mixture weight is applied for each frame in the
sentence while in trajectory model, it is applied once per
phone. So, we may need to re-scale the contributions of the
mixture weights to make it more effective. The second issue
is the use of duration information. From our experience,
use of duration information can improve phone classifica-
tion significantly. In our current experiments, we do not
use it to avoid rescoring n-best with too many new param-
eters. The third is further understanding of the effect of
segmentation. Because the trajectory models represent the
whole phone, the goodness of the segment boundary is im-
portant. It is not clear whether the initial segmentations
are problematic or that variation by a couple of frames is
insufficient.

In summary, we presented different ways to improve the
parametric trajectory models for LVCSR, in this paper. In
particular, we showed that the use of mixture model, con-
text dependent model and better initialization techniques
can improve the trajectory models as measured on phone
classification accuracy. We also presented a efficient algo-
rithm for improving segment boundaries in both training
and n-best rescoring. By combining trajectory model with
an HMM model in the n-best rescoring paradigm, we can
improve recognition by 0.3%.

5. Reference

1. H. Gish and K. Ng, “A segmental speech model with
applications to word spotting”, In Proc. ICASSP,
1993,pp. 447-450.

2. M. Ostendorf, A. Kannan, O. Kimball, et al., “Inte-
gration of diverse recognition methodologies through
reevaluation of n-best sentence hypotheses”, In Proc.
DARPA Speech and Natural Language Workshop,
pages 83-87, 1991.

3. H. Gish and K. Ng, “parametric trajectory models for
speech recognition”, In Proc. ICSLP 1996, pp. 466-
469.

4. L. Nguyen et al., “The 1994 BBN Byblos speech recog-
nition system,” In Proc. SLS Technology Workshop,
pp. 77-81, 1994.



