An Event Driven Model for Dialogue Systems

Kuansan Wang

Speech Technology Group, Microsoft Research
One Microsoft Way, Redmond, WA 98052

ABSTRACT

This paper reports our progress in building a mixed initiative,
goal-oriented dialogue system for human machine interactions.
The dialogue model embraces the spirits of the so-called plan-
based approach in that the dialogue flow is not statically
authored but dynamically generated by the system as a natural
outcome of the semantic evaluation process. With multimodal
applications in mind, the dialogue system is designed in an
event driven architecture that is commonly seen in the core of a
graphical user interface (GUI) environment. In the same
manner that GUI events are handled by graphical objects, the
proposed dialogue model assigns dialogue events to semantic
objects that encapsulate the knowledge for handling events
under various discourse contexts. Currently, we have found
that four types of events, namely, dialogue object instantiation,
semantic evaluation, dialogue repair, and discourse binding,
are sufficient for a wide range of applications.

1. INTRODUCTION

As more and more information can be accessed through
automatic agents, the quality of human machine interaction has
become a critical issue for system usability. In most cases, it is
unlikely that a user can access desired information in a single
query. More often than not, the query might be ambiguous,
incomplete, or even incoherent with respect to the interaction
history. Even if the request is well formed, precise, and
perfectly recognized by the system, it is quite common that the
size of the legitimate answers is so huge that the system has to
consult with the user to reach a useful and comprehensible
response. All these require the system to engage in a dialogue
with its human user to progressively refine the goal and
complete the task. Accordingly, the dialogue system plays a
forefront role in the human machine interactions.

With the advancements of computing technologies, it is
reasonable to believe that the user expectations on dialogue
system will quickly evolve from “just getting things done” to
“getting things done intelligently.” How to equip a dialogue
system with sufficient amount of intelligence has been an
actively studied research topic. One popular model for
intelligent dialogue systems can be lumped under the name of
plan-based approach [1-3]. The key belief here is that,
ultimately, the conviviality between the interlocutors should
emerge naturally from the interactions rather than be dictated
and hand coded a priori by the system’s designers. In other
words, an intelligent dialogue system should be capable of
managing the contextual exchanges with its user and inferring
the proper course of actions dynamically based on the
semantics of the discourse. One obvious benefit with a plan-
based system is that the application designers are alleviated

from the burden of having to exhaustively enumerate all the
possible dialogue flows and program the system’s responses
for all of them in a painstakingly step-by-step fashion.

Many dialogue systems have employed speech as the basic
communicative medium. For telephony applications, where
speech is arguably the most compelling modality for
communication, such a speech centric view is quite adequate.
However, in a computer environment in which a multitude of
communication channels are usually available to the user, the
realization of a dialogue system must be augmented so that the
various modalities (e.g. speech, gesture, hand writing, etc.) can
be seamlessly integrated into forming a complementary
environment that enhances user experience.

In this article, we report our progress in implementing a
computational architecture for multimodal dialogue systems.
The proposed architecture is based on the event model
commonly seen in a GUI environment for ease of integration
with the existing interface paradigm. The strength of the plan-
based approach, namely, to infer a proper course of actions
based on logical reasoning, is embraced in the proposed model.
In general, the proposed model views the dialogue as an
integrated part of the discourse semantic evaluation process,
which all the dialogue actions are natural outcomes of. The
proposed dialogue management system is designed to function
in conjunction with a signal understanding unit as shown in
Fig. 1. The understanding unit processes the input signal,
extracts and translates the embedded message into a semantic
representation based on a set of principles, which we call the
semantic model, and the discourse context provided by the
dialogue management system. The problem of signal
understanding and the mechanisms we use to tackle the
problem are further elaborated in Sec. 2. The semantic
representation is then passed on to the dialogue management
system for semantic evaluation. The evaluation process is
aided by a set of event handlers that contain domain specific
knowledge pertinent to achieving the dialogue goal. The
behavior model guides the dialogue management system to
synthesize proper responses in case any interactions with the
human user are needed. As we focus on the aspects of
automatic dialogue flow generation in this article, behavior
models are out of the scope for our discussion

2. SIGNAL UNDERSTANDING

It is assumed that the meaning of a single is carried by a series
of semantic objects in the same manner that a sentence is
composed of words. With such a view, it is appropriate to treat
the problem of signal understanding as a pattern recognition
problem, in which the patterns to be recognized are the
semantic objects. The task of designing a signal understanding



Semantic
odel

Signal

input Understanding

context semantic objects

Event
handler

Behavior
odel

Dialogue
Management

response

Figure 1: A system diagram of the event based dialogue
system.

system, therefore, is to come up with a decision rule such that
the semantic objects are identified in an optimal way.

As common to many pattern recognition problems, it is usually
more practical to embrace the principle of self-diversification
and construct the patterns from smaller and more manageable
units. In automatic speech recognition, for instance, a speech
utterance is usually thought to be composed of a sequence of
subword units (e.g., phones or senons) that serve as the
building blocks of a language. For an understanding system,
the same principle may also apply, but there exist distinctive
challenges. First, even in the speech only case, a semantic
object may sometimes stretch over the sentence boundary and
take several utterances to emerge. A spoken dialogue system
must therefore be able to deal with semantic objects at a wider
range, from subword all the way up to the discourse level. For
multimedia systems, the recognition of a semantic object is
even more challenging since it can reside over signals from
various media.

To cope with these challenges, we employ a representation,
called semantic classes, to denote the objects and describe the
relations that hold among them. Our approach follows the well-
established semantic frame method first proposed by [4]. We
define the semantics in terms of the dialogue events that may
be consequently invoked, i.e., we embrace the spirits of the so-
called “procedural semantics” approach [5] in this work.
However, we further abstract the notion of semantic frames by
typecasting the semantic classes, and use the types of semantic
classes as the basic units for constructing syntactic structures
and understanding rules. Moreover, the semantic classes are
nested recursively to denote semantic objects ranging from the
subword to the discourse level, thereby unifying the
understanding architecture.

2.1. Type Abstraction

Semantic classes are designed to separate the essential and
form-independent attributes of a semantic object from its
physical realizations. The attributes of a semantic class can, in
turn, be semantic classes themselves. The concept behind
semantic classes is identical to the mechanism known as type
abstraction commonly employed in software design using a
strongly typed programming language. From an understanding
point of view, a semantic class is an abstraction of the
collection of semantic objects that have the same attributes and

usually can be expressed, and hence be understood, in the
similar manners.

Another argument for type abstraction is that the multitude of
semantic objects is usually a result of the numerous ways and
perspectives that can be used to describe a physical entity.
Quite often in an understanding system, it is more important to
correctly identify the entity of interest than to capture the
mechanism that describes it. For instance, one may refer to a
person by his name, job function, relations to others, or, in a
multimodal environment, by pointing to his photo on a display.
All these references lead to semantic objects that are
apparently distinct yet should be associated with the same
physical entity. Accordingly, it is often useful to segregate the
conceptual manifestation and its realizations into different
layers of abstraction so that the semantic objects can be better
organized and managed.

2.2. Property Inheritance

Introducing inheritance into the semantic class hierarchy
further augments the multi-layer abstraction mentioned above.
Class A is said to inherit or be derived from class B if class A
possesses all the attributes of class B. In this case, class A and
B are called the derived class and the base class, respectively.
Inheritance is a mechanism to propagate knowledge and
properties through the structural relationships of semantic
classes. It is crucial for many types of intelligent behavior such
as deducing presumed facts from general knowledge and
assuming default values in lieu of explicit and specific facts.

Perhaps the strongest motivation to employ inheritance is to
facilitate the multi-layer abstraction mentioned above. Very
often, a base class is constructed with the general properties of
a type of semantic objects, and a collection of more specific
classes are derived from the base class to support the various
embodiments of the underlying type of the semantic objects.
For example, a semantic class architecture for the reference to
a person can have the methods (e.g., by name, job function) and
the media (e.g. speech, handwriting) of reference as the first
layer of derived classes. One can then cross match the viable
means (e.g. by name via speech, by name via handwriting) and
develop the second layer of derived classes for use in the real
applications.

2.3. Functionality Encapsulation

The goal of abstraction is to reduce the complexity in
describing the world, in this case, the semantic objects and
their relations. One can inspect the quality of abstraction by
examining the extent to which the constructs, i.e., semantic
classes, are self-contained, and how proliferating they have to
become in order to account for novel scenarios. Studies in data
structure and software engineering propose the notion of
encapsulation, which suggest that individual attributes have
local rather than global impacts. This principle also serves as a
guideline in designing the semantic class.

Semantic class encapsulation can be elaborated in two aspects:
syntactic and semantic. The syntactic encapsulation refers to
the constraint that each attribute in a semantic class can only



have relations to others from the same class. The collection for
these relations is called the semantic grammar, which specifies
how a semantic object of this type can be identified in a signal.
The semantic encapsulation, on the other hand, dictates the
actions and the discourse context under which they may be
taken by a semantic class. This is discussed further in Sec. 3.

2.4. Dialogue Polymorphism

Dialogue polymorphism refers to the fact that a given semantic
grammar may elicit, in an automatic manner, a variety of
actions that are dependent upon for various contexts. The
versatility in system responses is a key measure of success for
an intelligent dialogue system. In our model, dialogue
polymorphism is achieved naturally by combining the two
aforementioned mechanisms: encapsulation and inheritance. In
dealing with a person, for example, the grammar may simply
point to the base class mentioned in Sec. 2.2. As the user’s
response is collected, the signal is parsed with the semantic
grammars from all the derived classes, and the best match is
chosen to instantiate a semantic object. The system can
accordingly carry out the encapsulated actions that are attached
to the chosen semantic class.

3. DIALOGUE SYSTEM

In a plan-based dialogue model, the dialogue actions are
regarded as a subset of the activities involved in the process of
semantic evaluation. By taking the notion of procedural
semantics, we equate semantics with actions that follow
consequently, and encapsulate them in the semantic class. The
dialogue management system in the proposed model (Fig. 1) is
responsible for following through these actions. In this section,
we elaborate two aspects to the issue, namely, the mechanism
and the order in which these actions are executed.

3.1. Dialogue Events

It is important to note that the proposed dialogue model is
intended to be domain and application independent. In other
words, our focus in this work is a generic dialogue rendering
architecture. The competency of the system resides solely in
the specification of semantic classes, but that should not
prohibit a design of an intelligent system. The key issue is that,
because the dialogue system can make no assumption on what
kind of actions it may encounter, general mechanisms must be
provided for executing actions.

We observe that general purpose GUI rendering also faces the
similar problem, and a solution, i.e., the event based approach,
has been widely used with much success. We believe that the
event model may also be adapted to realizing intelligent
dialogue systems. For our purposes, we define the following
dialogue events, through the capture of which the domain
dependent actions can be invoked.

Active Instantiation

In a mix initiative dialogue system, a semantic object can be
instantiated either because new information voluntarily offered
by the user is received, or because it is the natural action

deduced by the dialogue system. From the system’s point of
view, these two mechanisms are called passive and active
instantiation, respectively.

Passive instantiations are system internal actions in the sense
that they are fully specified one the semantic class architecture
is given. Active instantiations, on the other hand, usually
involve synthesis of a series of actions to solicit user’s
response and therefore are application dependent.

Semantic Evaluation

This event is posted by the system whenever it requires domain
specific knowledge to proceed in the course of evaluation. A
need for database inquiry, for instance, is a common cause that
prompts the dialogue manager to issue this event.

The semantic evaluation requires the most sophisticated event
handler because it must send back to the dialogue system
messages that usually change the flow of the dialogue, or
trigger other events (dialogue repair or semantic binding) to be
posted. Messages that can be returned are evaluation
succeeded, evaluation failed, invalid information, and value to
be determined. Sec. 3.2 further discusses how these affect the
dialogue flow generation.

Dialogue Repair

A dialogue may be diverted away from the ideal flow due to
various reasons (e.g. mis-recognition, out of domain reference,
conflicting information), many of which require domain and
application specific knowledge to guide the dialogue back to
the desired course. This process is called dialogue repair. An
appropriate repair strategy is often critical to the usability of a
dialogue system, but few guidelines are domain and application
independent. Accordingly, our system only detects the need for
dialogue repair, and leaves the realization of the repair strategy
in the corresponding event handler.

Semantic Binding

Semantic binding refers to the step that links the semantic
object, after being instantiated through the evaluation process,
to the physical entity in the application. Because an entity can
be identified by partial information (e.g., last name of a
person), binding is necessary for the system to grasp the whole
attributes of the objects the dialogue is concerned with.
Semantic binding is also critical for intelligent behaviors such
as setting the discourse context for reference resolution. In this
model, the binding event handler is also an ideal place to
include the actions, such as greeting or confirmation, to
enhance the flow and user experience.

3.2. Flow Inference

One common belief in intelligent dialogue studies is that the
dialogue flow can be generated from the discourse context and
the relations among the semantic objects by means of logical
inference. Accordingly, to facilitate automatic flow generation,
one has to define not only what attributes should be grouped
together to form a semantic class, but also how these attributes
should interact with each other in a dialogue.



Book Flight (AND)

Inbound Trip (XOR)
Outbound Trip ¥

. One Way Flag
Itinerary (AND)

. Place (OR) Place (OR)
Time(OR) origin destination
City Name Airport Name

Figure 2: A portion of the semantic tree hierarchy for the Airline
Travel Information System application.

To this end, we introduce the concept of “logical container” as
a dialogue property to be encapsulated in a semantic class.
Three types of logical containers are defined. A semantic class
is an AND type container if all its attributes must be evaluated
successfully. If this requirement is not met, the evaluation of
the AND type semantic object is considered failed, which will
prompt the system to post a dialogue repair event. An OR type
container requires at least one attribute to be successfully
evaluated. Similarly, for an exclusive or (XOR) type container,
one and only one. All these three containers operate on the
short-circuit Boolean logic.

Fig. 2 illustrates a partial semantic class hierarchy for a simple
application similar to the Airline Travel Information System.
The dialogue goal, to gather the information for booking a
flight, corresponds to the highest level semantic class.
Evaluating this semantic class drives the dialogue system to
traverse down the semantic class structure, eventually fulfilling
all the steps necessary to achieve the dialogue goal. This is
achieved by recursively evaluating the attributes, instantiating
semantic objects actively if necessary. The logical relation of
each semantic class determines the rules of instantiation and
dialogue repair. For instance, if the user specifies the trip to be
one way only, the evaluation of the “One Way Flag” semantic
class will succeed. As the “Inbound Trip” semantic class being
an XOR container, the dialogue system will bypass the
evaluation of the “Itinerary” attribute in the “Inbound Trip”
semantic class.

The “Itinerary” semantic class encapsulates the basic elements
to specify a one way trip: the time of travel, the origin and the
destination of the trip. Since it is designated as an AND type
container, the dialogue manager will try to acquire any missing
information by actively instantiating the corresponding
semantic classes it contains. The active instantiation event
handlers for these classes solicit information from the user by
implementing certain prompting strategy.

The “Place” semantic class, which is used to denote both the
origin and the destination, is designed to pinpoint the exact

location for air travel. The user may specify the location by
either the city name or the airport name. One convention here
is that if multiple airports serve the city, the evaluation of the
“City Name” semantic class will fail. The method effectively
instructs the dialogue system whether an ambiguity due to
multiple airports has occurred, and an airport semantic object
should be actively instantiated to resolve the ambiguity.

4. CURRENT PROGRESS

At this time, we have implemented the core rendering engine to
communicate in speech, text inputs from keyboard, and text
outputs on the screen. For speech modality, an automatic
recognizer and a text to speech synthesizer are used to convert
speech into text and vice versa. A dynamic programming
algorithm is implemented to parse the text inputs into the
semantic object structure. Heuristic based scoring methods are
currently used. In the near future, we intend to eliminate the
need to convert the signal into a textual representation by
implementing semantic classes appropriate for various media.

5. SUMMARY

In this article, we describe dialogue system architecture aimed
at multimodal human machine interactions. The system
consists of a signal understanding and a dialogue management
module, both of which are considered to be complementary
part of the semantic evaluation process. The understanding
system is responsible for detecting the semantic objects
embedded in the signal, based on which the dialogue system
then attempts to extract the semantics at the discourse level.
Since the system is intended to be generic, protocols must be
defined for accessing application dependent knowledge. The
event model is adopted as the mechanism for this purpose. We
define the types of events that are required, and demonstrate
their role in the system with an example.

6. ACKNOWLEDGEMENT

Many core features of the semantic classes are originated from
Bruno Alabiso at Microsoft Research.

7. REFERENCES

1. Sadek, M.D., Bretier, P., and Panaget, F., “ARTIMIS:
Natural Dialogue Meets Rational Agency,” Proc.
1JCAI-97, Japan, 1997.

2. Allen, J.F., Natural Language Understanding, 2" Ed.,
Benjamin-Cummings, Redwood City, CA, 1995.

3. Cohen, P.R., Morgan, J., and Pollack, M.E., Intentions
in Communications, MIT Press, Cambridge, MA, 1990.

4. Minsky, M., “A Framework for Representing
Knowledge,” in The Psychology of Computer Vision,
edited by P. H. Winston, McGraw-Hill, New York, NY,
1975.

5. Winston, P.H., Artificial Intelligence, 3" Ed., Addison-
Wesley, 1992.



