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ABSTRACT

In this study of Finnish microprosody, two prosodic parame-
ters — pitch and loudness — were modeled with artificial neu-
ral networks. The networks are of the general feed forward type
trained with backpropagation. For each phoneme, the network
predicts a series of either pitch or loudness values on the basis
of information of the phoneme’s phonologically motivated fea-
tures and its phonetic environment. The tests we have run so
far indicate that the neural networks are highly successful and
accurate in modeling the micro-level behavior of both pitch and
loudness. The tests were conducted on isolated word material but
some preliminary results obtained from sentence material are also
discussed.

1. INTRODUCTION

Pitch-related microprosodic variation has been well attested
for several languages including Finnish. For instance, the fun-
damental frequency difference between open and close vowels
and the effect of immediate consonant context on the Fo of a
vowel seem to be universal [10], [1], [9]. Similar variation can
be observed with regard to loudness. The most well known phe-
nomenon is the difference between the inherent loudness levels
of, e.g., open vs. close vowels and sonorant vs. obstruent conso-
nants [5].

The microprosodic characteristics can be seen as the low-
est level of a multi-layered prosodic system producing the final
suprasegmental realization of speech. They are not generally seen
as a part of the linguistic-prosodic pattern of the utterance, but
rather to be segmentally conditioned. That is, they reflect the
gestures necessary for producing the specific articulatory move-
ments for various vowels and consonants.

In speech synthesis, microprosodic modeling has usually been
fairly scarce — the developers have concentrated on more salient
and urgent problems and the modeling has usually remained on
a first approximation level. In general, speech synthesizers use
some information about the intrinsic pitch, loudness and duration
of speech sounds which are changed algorithmically according
to certain rules that take the sounds’ context into account. The
microscopic changes within the time-varying parameters of the
sounds have not been paid much attention to, although most syn-
thesis systems do model the timing of Fopeaks and differences
in Foslopes and onsets after different consonants. It is probable
that the inclusion of microprosodic variation would improve the
naturalness and even the intelligibility of synthesized speech.

It can be argued that microprosodic variation is analogous to
variation in other aspects of speech in that there are both phe-
nomena that are extremely common and phenomena that are ex-
tremely rare. The rich combinatorics of natural language makes
the number of possible combinations of units very large. Con-
sequently, the individual phenomena that are rare in themselves
become common when seen as a group and occur frequently in
running speech or text. This makes it practically impossible to
gather databases that can serve as a training basis for all the phe-
nomena and combinations in speech (even in some constrained
domain, such as microprosody). This calls for models that can
make generalizations of some kind and generate accurate predic-
tions for patterns that are absent in the database.

Neural networks are known for their ability to generalize ac-
cording to the similarity of their input but at the same time known
for being able to distinguish different outputs from input patterns
that are superficially similar. This means that the networks can
learn to predict patterns it has never seen before — a fact that
makes them an ideal candidate for building models from imper-
fect data for the highly complex phenomena that prosody com-
prises in all its levels.

The network architecture used here, as well as the data repre-
sentations for both types of networks, was the same throughout
the tests since the problem at hand is quite similar — to model
microscopic variations in two time-varying parameters that occur
in similar circumstances and are for the most part governed by
the same factors.

The models were trained speaker-dependently, i.e., one or
more models for each speaker were generated. The study was
carried out on the object-oriented QuickSig signal processing en-
vironment, which is programmed in LISP/CLOS [4]

2. TRAINING AND EVALUATION DATA

The tests presented here were conducted on a database of about
2000 hand-labeled isolated words spoken by two male Finnish
speakers. The words in the set include most bi-phonemic se-
quences found in Finnish and some interesting tri-phonemic se-
quences (mostly consonant clusters). The words were further di-
vided into two training and two evaluation sets with a ratio of 2
to 1, respectively.

We used nine points (or frames) for the relative linear position
of the estimated value within the phoneme. Thus, each phoneme
in the set produced nine training elements for the networks. The
total number of training elements varied from about 500 to 20000.



2.1. Input Data Normalization

The signal amplitudes in our database are not homogeneous
due to slightly different conditions during the recording phase —
the distance between the speaker’s mouth and the microphone, for
instance, could not be kept totally fixed. For this reason we had
to implement a normalization scheme to keep the inputs for the
loudness networks as constant as possible. Our scheme is as fol-
lows: first a sonority table is calculated for each phone/phoneme
in the database for each speaker (this table corresponded with
the ones reported in the literature with the open vowels being the
loudest, followed by mid and close vowels [5]). Second, each
loudness signal is shifted according to the peak (which invari-
ably falls on the first syllable nucleus) and the vowel in which the
peak occurs. For instance, if the peak occurs in the vowel [4] (the
loudest one), the signal is shifted so that the peak value becomes
100 phon — if the peak occurs in some other vowel, the signal is
shifted in such a way that the peak value will be 100 phon minus
the value in the sonority table. Thus, e.g., a peak occurring in
[1] will result in a value of 100 — 4.8 = 95.2 phon. This is ob-
viously not the best way to normalize the loudness signals but it
had a positive effect on the networks’ performance.’ See section
4 for details on the normalization of the Fy-curves.

3. NEURAL NETWORK
ORGANIZATION AND INPUT
CODING

The neural networks used in this study are of the general feed
forward type trained with backpropagation. The networks con-
sist of three layers — input, output and a hidden layer. The out-
put layer consists of one node which outputs either a fundamental
frequency value in (coded) semitone (later converted to an abso-
lute Hertz value) or a loudness value in (coded) phon. The input
has eighteen values for a distributed coding scheme (see below).
The hidden layer has eleven nodes — the optimal number was de-
termined empirically. Figure 1 shows the network’s architecture
as well as its input coding strategy.

The input coding follows a distributed scheme used success-
fully in our earlier studies of Finnish lexical prosody [6], [7] and
[8]; this was an adaptation of the scheme used by Karjalainen
and Altosaar for predicting segmental durations in Finnish [3]. A
sequence of phonemes is represented by a set of linguistically
motivated features that are straightforward to calculate from a
string of phonemes and require no structural analysis of the in-
put text?, The features are: phoneme identity (e.g., /a/), phoneme
class (e.g., nasal), phoneme broad class (consonant vs. vowel)
and quantity degree (short vs. long). Each input vector also in-
cludes three values representing the information about the context
for the estimated value or frame. These are: length of the word (as
the number of phonemes in the word), position of the estimated
phoneme in the word and the position of the estimated frame in

1The normalization scheme does not take into account the differences
in the stress level between the words, However, this does not seem to
be a problem, for the words in the database were articulated in a very
monotonous and neutral manner,

2The only structural analysis we have experimented with so far has
been the syllabification of the input text. This, however, had very little
positive effect on the networks’ prediction capability [7].
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Figure 1: The neural network input, coding and architecture. The
example shows the coding for the vowel / in the word takassakin
(“in the fire-place, t00’). A seven-phoneme window is used; the
three features for the vowel are phoneme identity (a = /a/), its
class (BV = back vowel) and its length (. = short). The addi-
tional information in the training vector includes: the estimated
phoneme’s place in the word, the length of the word and the esti-
mated frame’s position in the phoneme.

the phoneme — the estimation for each phoneme thus consists of
nine equidistant frames or points within the span of the phoneme.
The input vector covers a seven-phoneme window by providing
information about three phonemes on both sides of the estimated
one. Moreover, the context is coded in a manner which provides
more resolution (i.e., more detailed information) for the nearby
neighbors and less resolution for the further neighbors. Each in-
put value is coded as a real number between zero and one. See
Figure 1 for more detail.

4. RESULTS

The performance of both types of networks is summarized in
Table 1. The results for loudness are somewhat preliminary since
the networks were trained on data that was normalized by accord-
ing to maxima within words; i.e., the network estimates, not only
the contour within the phone, but within the whole word as well.

Figure 3 shows a comparison of the actual fundamental fre-
quency values and the neural network estimates for six different
cases. See the caption for more detail. Somewhat similar cases
for loudness can be seen in Figure 4.
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Figure 2: The neural network estimate for pitch (upper pane) and the actual Fo-contour (below). The estimates for each phone were
shifted according to the average Fo of each segment in the original pitch segment. Although the network was trained on vowel data
only, the estimates for other voiced phones are also shown.
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Figure 3: Estimated pitch and actual values for [¢] in the words knalli and tase, for [e] in tase and [1] in ladata, gallup and tuuli. The
vowels are estimated with a network that was trained on all voiced phones; the 1-estimates represent a specialized network trained only
on [1] phones. The triangles represent neural network estimates and the circles the actual Fp values. The x-axis represents the nine
estimation frames for each phone.
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Figure 4: Estimated loudness and actual values for [a] in the
words kahdeksan and arlanda. The triangles represent neural
network estimates and the circles the actual loudness values. The
x-axis represents the nine estimation frames for each phone.

Table 1: Network estimation results (average absolute error) for
pitch and loudness — two male speakers. The pitch values are in
Hertz (average percent error) and the loudness values are average
phon. The values for [t] are for the release phase only. The term
“sonorant” refers to voiced, continuant consonants.

Pitch (%) Loudness (phon)
Speaker MK | MV | MK | MV
Voiced 1.66 | 2.07 | 2.61 3.22
Vowel 1.39 | 2.01 | 1.76 2.50
Sonorant 1.76 | 1.88 | 3.05 3.45
Voiced Stop - - 4.59 3.56
Unvoiced - - 3.66 4.45
Fricative - - 2.55 3.28
Unvoiced Stop - - 3.18 3.39
[a] 140 | 2.18 | 1.37 1.76
1 1.18 | 1.74 | 2.48 2.30
[s] - - 2.33 2.53
[t] - - 3.28 2.32

All errors are reported as average absolute error: per cent for
pitch and phon for loudness.

Since these networks were designed to predict only local vari-
ation in pitch, global variations were removed from the training
data. This was accomplished by setting a reference level of 100
Hz for each phone’s pitch. Therefore the networks were shown
only local variations around 100 Hz and were not subjected to
global variations of pitch.

‘We have run some preliminary tests on sentence material (160
phonetically balanced sentences from two speakers) and the re-
sults seem to be promising. In order to produce signals on the
sentence scale some other method has to be utilized to produce
the larger scale variation. One such possibility is to use, e.g.,
the Fujisaki algorithm [2]. The results from the micro-level net-
works are then superimposed on the smoother signals produced
by the algorithm for the final estimate. Figure 2 depicts an exam-
ple where the microprosodic pitch-contour has been predicted by
a neural network.

5. CONCLUSION

We have presented some of our ongoing research of Finnish
prosody. Our results this far show that the neural network model
is applicable to both lexical and microscopic variations of the
prosodic parameters. The networks are capable of rule-like be-
havior and the next, obvious, step is to study the networks them-
selves to find out more about the factors that govern them and
thus the behavior of the parameters they model.
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