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ABSTRACT

The research presented here focuses on implementation and ef-
ficiency issues associated with the use of word graphs for inter-
facing acoustic speech recognition systems with natural language
processing systems. The effectiveness of various pruning meth-
ods for graph construction is examined, as well as techniques for
word graph compression. In addition, the word graph represen-
tation is compared to another predominant interface method, the
N-best sentence list.

1. INTRODUCTION

An important research topic in recent years has been the integra-
tion of speech recognition systems with language models [2, 8].
Many systems integrate stochastic language models directly into
the speech recognizer. However, a structure in which a front-end
acoustic recognizer is interfaced to a separate language processing
module allows use of more sophisticated parsing techniques and
additional semantic and contextual information to aid in speech
understanding. The choice of data representations used to accom-
plish this interface is of great significance, because this choice
determines how word and sentence hypotheses are evaluated in
light of our understanding of language and grammar. The under-
lying goal is to identify the 'best' overall sentence candidate with
respect to all available knowledge sources, as constrained by time
and space considerations.

Recently, word graphs have begun to be used as an alternative
to N-best sentence lists as an interface representation [1, 4, 5, 6].
N-best lists are a stream-based interface between acoustic and lan-
guage components, where the system must work on alternatives
one at a time. Word graphs, although they can be constrained to
the stream-based view, are able to support an aggregate process-
ing view as well, and therefore have flexibility which is important
in examining integration alternatives.

This research concentrates on evaluating the strengths of the
word graph representation. We systematically measure word graph
effectiveness against a variety of recognition parameters, and for
reference compare these measures against the traditional N-best
model. Effectiveness is judged here in terms of the accuracy of
representation, size of representation, and ease of interface to ad-
ditional knowledge sources. Although prior work has been done
on evaluation of the word graph representation [3, 5, 9], most of
this work is theoretical in nature and has not included systematic
experimentation and comparison to alternative methods of repre-
sentation.

Careful study is made of whether significantly more informa-
tion is contained in word graphs as compared to N-best lists. The
gain in information is determined by tracking the number of sen-
tences throughout a corpus for which the word graph representa-
tion contains the correct sentence but the N-best list does not. For

our research the recognition task is Research Management, a mid-
size corpus (approximately 1000 words) containing 5000 acoustic
utterances of 3000 distinct sentences.

In addition, since word graphs can be made arbitrarily large
by using lengthy acoustic processing with little pruning, experi-
ments were done which tracked the average word graph size, av-
erage word graph accuracy, and information gain (versus N-best
lists of 1-10 sentences) against a wide variety of pruning control
parameters.

2. SYSTEM CONFIGURATION

The configuration for the system is shown in Figure 1 below. The
acoustic portion of the system is based on a multiple-mixture
triphone Hidden Markov Model (HMM) [7] with a simple inte-
grated grammar (either wordpair or bi-gram models), based on
HTK Version 2.1 by Entropic [10]. Recognition is achieved using
a token-passing implementation of the Viterbi algorithm, the out-
put of which is a large recognition lattice. The language model is
a Constraint Dependency Grammar (CDG) [2] ; the CDG parser
is designed to parse either word graphs or individual sentences.
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Figure 1: System Block Diagram (dashed lines are not imple-
mented in the current system)

For clarity, we will define the following terms:

Lattice The Lattice represents the raw output of the acoustic rec-
ognizer, and is a complete record of all tokens which were
not pruned during the recognition process. It may include
many similar or identical paths with slight differences in
word starting and ending times.

Word Graph This is directed acyclic graph representing the pos-
sible word paths through the utterance, after compressing
and post-processing the word lattice. There are several
equivalent definitions for word graphs; in our research the
graph nodes represent words and connecting arcs represent
word transitions. The graph may be re-scored and pruned



to incorporate additional knowledge sources, thus decreas-
ing the total number of paths.

N-best Sentence List This is a list of the top N most likely sen-
tence paths, produced by searching the lattice.

3. REPRESENTATION ISSUES

3.1. Pruning Mechanisms

Pruning is typically performed to control lattice growth during
recognition. All pruning methods are applied to the lattice itself
and therefore affect the N-best list and word graph in identical
ways. The pruning variables include:

e Beam Width: As tokens pass through the recognition net-
work, the total number of active word models is limited
by a beam width mechanism. The difference between the
log probability of each active model and the current maxi-
mum log probability is the determining factor in this prun-
ing method.

¢ Maximum Active Models: Similar to beam width prun-
ing in that it works by limiting the number of active word
models, this method utilizes a hard ceiling on the number
of models allowed to be active at any point in the utterance.

¢ Word End Likelihood: This is also a beam width mech-
anism, but one which considers only models labeled as
word-end nodes within the recognition network, thus al-
lowing pruning to happen at the word level rather than the
phoneme level.

¢ Number of Tokens: Pruning with this method is imple-
mented by starting the recognition process in each state
with multiple tokens rather than just one, allowing for a
higher branching factor in the lattice.

The measures by which the effect of these pruning variables
can be determined include primarily lattice size (number of word
nodes) and lattice accuracy (defined to be the percentage of lat-
tices which contained the correct sentence as a possible path).
Experiments were run which varied each of the pruning variables
individually, while holding all other factors to an empirically es-
tablished baseline point.

3.2. Post-processing Techniques

In addition to the pruning methods, some post-processing can be
done which decreases the average size of the lattice while main-
taining all possible lattice paths. This compression is possible
because identical paths are represented more than once in the lat-
tice due to differences in word starting and ending times. These
paths may be combined in a post-processing step.

Our algorithm identifies all path-identical sub-graphs by find-
ing and compressing node pairs which represent identical words
and have either identical precursor lists or identical successorlists
(or both). Recursive application of this technique ensures that
identical sub-graphs of any size will be compressed, giving the
smallest possible graph that still contains the same word-paths as
the original lattice. Using this compression technique, the word
graphs for our experiments were an average of 60% smaller than
the original lattices.

Post-processing techniques may also be used to handle lexi-
cal issues between the recognizer and the parser, such as contrac-
tions and proper nouns. In our system, all contractions are identi-
fied in the word graph and split into multiple nodes, while proper
nouns are identified and compressed (subject to suitable path con-
straints) into single nodes. Techniques such as these may either be
implemented as separate processing tasks or incorporated directly
into the parser.

4. RESULTS

The entire Resource Management corpus (roughly 5000 separate
utterances of 3000 distinct sentences) was evaluated for each com-
bination of parameters.

As stated earlier, since pruning methods have been applied di-
rectly to the recognition lattice, the N-best sentence list is a subset
of the word graph. To quantify the amount of information gained
by using the word graph representation, we compute the Infor-
mation Gain as the number of sentences for which word graphs
contain the correct utterance and N-best sentences do not, i.e.:

Gain G = W — N , where

W = No. of word graphs containing correct utterance

N = No. of N-best lists containing correct utterance

Lattice accuracy, defined as the percentage of lattices which con-
tain the correct sentence, and lattice size, defined as the number
of lattice nodes, are also tracked for all cases. Both word-pair and
bi-gram grammar models were considered.

4.1. Pruning Results

4.1.1. Beam Width Pruning

The beam width used in this set of experiments was adjusted from
50 (very tight pruning) to infinity (no pruning). The impact on
average lattice size was significant, growing from 13.5 to 107.0
nodes with a word pair grammar and from 14.9 to 495.0 nodes
with a bi-gram grammar. As the pruning was decreased, a small
but increasing number of sentences in the set were contained in
the word graph but not the N-best list. At most, G reached 20
sentences, representing 0.39% of the corpus. These results are
shown below in Figure 2.

4.1.2. Maximum Active Model Pruning

The maximum number of active models was varied from 25 to
infinity, yielding an average lattice size ranging from 23.3 to 58.6
in the word pair case and from 81.6 to 241.0 in the bi-gram case.
With this method, G peaked at 46 (0.89% of the corpus). Overall,
this approach yielded the strongest data for word graph usage,
especially considering that the average lattice size was smaller
than that obtained using beam width pruning. Results for this
approach are shown below in Figure 3.

4.1.3. Word-end Pruning

The word-end beam width level was adjusted from 25 to infinity.
This change, however, did not result in an increase in G, which
flattened out at a level of 6 (0.12% of the corpus) and stayed there
throughout the sequence of experimental runs. Impact on lattice
size was negligible, moving from an average size of 22.5 up to
31.0.

4.14. Token Pruning

The number of tokens per state was increased from 2 up to 10;
however, as with the word-end pruning, the changes had little im-
pact on G, which stayed at 9 (0.18% of the corpus) through the
experiment. Again, lattice sizes were fairly constant, averaging
from 24.8 to 35.4.
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Figure 2: Information Gain vs. Beam Width
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Figure 3: Information Gain vs. Number of Active Models

4.2. Representation Issues

To summarize the overall impact of the information gain due to
the word graph representation, Figure 4 displays the information
gain (as a percentage of the sentences in the corpus) for increas-
ing length N-best lists, for the best case experiment (word-pair
grammar, infinife maximum active models). Figure 5 shows the
relative size of the word graphs and N-best lists.

From the above data it is clear that the two first two pruning
methods, which affected the number of active models, were the
predominant factors in causing a change in the word graph effi-
cacy. These were also the methods which had the greatest impact
on total lattice size. Since smaller lattices are desireable for time
complexity reasons, it is important to know whether small lattices
and high accuracy can by achieved simultaneously.

Figure 6 shows graph accuracy versus pruning levels, while
Figure 7 shows the average word graph size. Following these,
Figures 8 and 9 show the correlation scatterplots between word
graph size and information gain and between word graph accu-
racy and information gain, with correlation coefficients of 0.7953
and 0.6745, respectively. Together, these figures show that exper-
iments giving the largest word graphs are not necessarily those
giving the highest accuracies or largest information gains.

5. CONCLUSION

Results indicate that word graphs do offer a clear representation
advantage. The degree of this advantage is tied to the type of
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recognition model, its accuracy, and the degree of pruning. Word
graph sizes were manageable even at lower pruning levels, and
information gain at these levels varied from 17% for the 1-best
case to a little under 1% for the 10-best case. Although infor-
mation gain certainly correlates with word graph size, the graphs
which had the highest overall accuracies (peaking at a sentence-
level accuracy of 98%) were not in fact the largest ones. This
suggests that high accuracy and tractable word graph sizes are
mutually achievable. Results also suggest that the importance of
word graph representations will likely grow with higher vocabu-
lary and higher complexity tasks.

The experiments to date have examined the effectiveness of
N-best and word graph representations in the context of an overall
language processing system. Word graphs clearly have an advan-
tage in compactness, since graphs are smaller than lists (in terms
of number of words), yet N-best lists are retrievable directly from
the graph for any N. This allows both aggregate and stream pro-
cessing approaches to be supported.

Future work will include similar experiments on larger vocab-
ulary corpora with varying acoustic and language parsing models.
In addition, the interface mechanism can be tightened by incorpo-
rating feedback from the language model directly into the acoustic
recognition. The benefits of a word graph approach are likely to
increase with a tighter interface, since the word graph parser could
work together with the recognizer to prune illegal sentences from
the lattice during the recognition process.
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Figure 6: Pruning Level vs. Word Graph Accuracy
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Figure 7: Pruning Level vs. Word Graph Size
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