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ABSTRACT

Large vocabulary automatic speech recognition might assist
hearing impaired telephone users by displaying a transcrip-
tion of the incoming side of the conversation, but the system
would have to achieve sufficient accuracy on conversational-
style, telephone-bandwidth speech. We describe our develop-
ment work toward such a system. This work comprised three
phases: Experiments with clean data filtered to 200-3500Hz,
experiments with real telephone data, and language model de-
velopment. In the first phase, the speaker independent error
rate was reduced from 25% to 12% by using MLLT, increasing
the number of cepstral components from 9 to 13, and increasing
the number of Gaussians from 30,000 to 120,000. The result-
ing system, however, performed less well on actual telephony,
producing an error rate of 28.4%. By additional adaptation
and the use of an LDA and CDCN combination, the error rate
was reduced to 19.1%. Speaker adaptation reduces the error
rate to 10.96%. These results were obtained with read speech.
To explore the language-model requirements in a more real-
istic situation, we collected some conversational speech with
an arrangement in which one participant could not hear the
conversation but only saw recognizer output on a screen. We
found that a mixture of language models, one derived from
the Switchboard corpus and the other from prepared texts, re-
sulted in approximately 10% fewer errors than either model
alone.

I. Introduction

Advanced speech recognition technologies and affordable com-
putation make it feasible to explore automatic speech recogni-
tion as an aid for hearing impaired people conversing over the
telephone. Just imagine the following setup: the incoming tele-
phony voice stream is fed into a PC-based speech recognition
The

hearing impaired user looks at the displayed text and com-

engine, and the transcription is displayed on a screen.

municates via telephone with people without using today’s
cumbersome TDD or TTY system. Although current error
rates on the ARPA Switchboard and Broadcast News tasks
may seem too high for practical applications, we believe that
a speaker-dependent telephony system can provide acceptable
performance if users are cooperative and the task domain is
suitably structured. In the future, additional technologies may
help in this application, for example, speaker identification for
automatic selection of speaker-dependent models, and speech
synthesis for the impaired user who is not able to talk.

In our LVCSR system, words are represented as sequences
of phones. Each phone, modeled by a three-state HMM, is fur-
ther divided into 3 sub-phonetic units with context-dependent
tying[2].
structed from training data and the terminal nodes of the tree

For each sub-phonetic unit, a decision tree is con-

represent collections of instances of these classes grouped ac-
cording to context. These context-dependent leaves are mod-
eled by a mixture of Gaussian pdf’s with diagonal covariance
matrices. In our studies, the systems were built using ap-
proximately 2500 leaves with 30K and 120K Gaussians, ap-
proximately 12 and 60 Gaussians for each leaf, respectively.
Different mel-cepstrum based feature spaces were used for the
classifier, namely, 9 dimensional cepstra with normalized en-
ergy, 13 dimensional mel-cepstra (with C0) with their first and
second order differences, and the same cepstra with several
different feature space transformations. A weighted N-gram
(bigram or trigram) is used to compute the language model
probabilities. The signal processing of the feature space and
language modeling will be discussed in detail in later sections.

The HMMs were trained by 40K in-house collected sen-
tences, and the test set is an in-house office correspondence
script, which includes 61 long sentences, with 1117 words. The
wideband test set was collected through headset microphones,
mainly ANC-500, and the telephony data was collected live
through both local and long distance telephone networks, us-
ing several different telephone sets.

II. Acoustic Modeling on Desktop System

Prior to this study, a preliminary telephone band desktop sys-
tem had been built using WSJ0 and WSJ1 training sets. In
that system, the feature vectors were derived from 9 dimen-
sional mel-cepstra with normalized energy, and their first and
second order differences, using a Cepstrum Mean Normaliza-
tion (CMN) scheme. The error rate on 10 speakers was ap-
proximately 25%.

A narrow band desktop system using clean, close-talking
microphone data was then re-developed using in-house train-
ing data. This data was originally sampled at 16 KHz or
higher, but was decimated to 8KHz and band-pass-filtered to
200-3500Hz.

Visual comparison of spectrograms reconstructed from 9 di-
mensional and 13 dimensional mel-cepstra suggests that there
is useful information in the additional four cepstral compo-
When we tested both 9-dim CMN and 13-dim CMN

in our recognizer, we found that the latter produced a relative

nents.



Sampling 13 dim CMN 9 dim CMN WSJ IBM Training data
Rate 16KHz | 11KHz | 8KHz 8KHz Number of || 9dim | 9 dim | 13 dim | 13dim | 13dim
Error Rate 12.7 14.6 16.8 18.0 Gaussians CMN | CMN | CMN LDA | MLLT
30K, SI 25 18 16.8 15.2 14.5
Table 1: Error rates on different sampling rate. 120K, ST 16.8 15.3 13 12
| 30K, SD | | 1049 ] 978 | 94 [ 9.0 |

error rate reduction of approximately 7%. (Tablel) Although
the computation of Gaussian densities in 13 dimensions is more
expensive than in 9, the labeling accuracy with 13 dimensions
is significantly better. This results in reduced searching time
in the decoder, so that there is no significant increase in the
overall computation time.

To study bandwidth effects, tests were conducted with sam-
pling rates of 16kHz, 11kHz and 8 kHz, corresponding to
Nyquist frequencies of 8 kHz, 5.5 kHz, and 4 kHz, respec-
tively. Thirteen-dimensional cepstra (with C0) and their first
and second order differences were used as feature vectors for
these three systems. The same test set was downsmapled to
each of these frequencies. The error rate increased from 12.7%
in the 16KHz system to 16.8% in the 8KHz system. (Table 1)
Approximately 2% absolute degradation was seen for each of
these bandwidth reductions.

Other signal processing schemes were evaluated in an effort
to improve the performance. These are described below.

Linear Discriminant Analysis(LDA)[7] with nine concate-
nated frames of 13-dim cepstral vectors serving as input, ro-
tated and reduced to a 39-dimensional output vector, resulted
in a decrease of the error rate from 16.8% to 15.2%, which is
a 9% relative improvement.

The intent of LDA is to transform the feature space to a
coordinate system in which useful information is concentrated
in a smaller number of coordinates and where the coordinate
values are uncorrelated. The latter condition is helpful if the
pdf’s are to be modeled by Gaussians with diagonal covariance
matrices. LDA analysis, however, looks only at the global
average of the within-class covariance matrices, and ignores
differences between them.

A more rigorous technique has been recently described for
constructing a linear transformation to minimize the loss that
results from constraining the covariance matrices to be diag-
onal [4]. We tested this Maximum Likelihood Linear Trans-
formation (MLLT) using the same 117 dimensions (9 frames,
13 dim each) as input, and again transformed them to a 39-
dimensional output vector. With this technique, the error rate
dropped to 12.0%.

To explore performance as a function of the number of Gaus-
sians, we built two systems, one with 120K Gaussians, (60-
Gaussian mixture per leaf on average), and the other with 30K
Gaussians (12 per leaf), using each of the above described sig-
nal precessing schemes. The results are summarized in Table2.
As a consequence of all of these techniques, the error rate

1Special thanks to colleague Dr. Y. Gao who provided the wide band
systems.

Table 2: Error rates on desktop, clean 8KHz Speaker Indepen-
dent (SI) and Speaker Dependent (SD) systems.

Number of || CMN | LDA | LDA4+CDCN | telephony
Gaussians adapted
30K, SI 28.4 26.2 21.2 22.5
120K, SI 25.6 19.1 20.6
[30K,SD [ 13.14 [ 11.68 | 1096 | 11.04 |

Table 3: Error rates on telephony Speaker Independent (SI)
and Speaker Dependent (SD) systems.

dropped from 25% to 12%.
The speaker dependent systems were then built and the re-
sults are listed at Table2.

IIT. Acoustic Modeling on Telephony Systems

Speech signals in telephone applications are inevitably vulner-
able to the channel distortion and additive noise during trans-
mission. Unlike the regular narrow-band applications, the dis-
tortion and noise in the telephone data can change from one
recording to another significantly.

For baseline evaluation, the desktop system was tested with
real telephony. (The test data was re-collected over telephone
with the same number of speakers). As expected, considerable
degradation occurred: the error rate jumped to 28.4%. The
LDA system was not significantly better because the rotation
matrix had been calculated from training data (clean speech)
which is very different from telephony speech. To improve the
performance, two approaches were tried. First, the system was
adapted using a limited amount (1/7 of training data) of tele-
phony data. The system was first adapted by MLLR[5] and
then Gaussian smoothing, a scheme similar to MAP adapta-
tion. The error rate came down to 20.6% (Table3). Feature-
based signal processing techniques were then further explored.

A. The CDCN Algorithm

Since signal distortion and noise in telephone data can change
from one recording to another, it can be very beneficial to en-
hance signals in feature space so that they appear to come from
a more uniform acoustic condition. In this case, algorithms
that can facilitate the simultaneous joint compensation for the
effects of channel distortion and additive noise are highly de-

sirable.
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Figure 1: A model of environmental distortion used in CDCN

To this end, the Codeword-Dependent Cepstral Normaliza-
tion (CDCN) algorithm developed at CMU [1] is explored in
this paper. The CDCN algorithm assumes the model of envi-
ronmental degradation shown in Fig. 1. The power spectrum
can be written as in Eq. 1

Pa(w) = Po(w)|H(w)I* + Pa(w) (1
and the corresponding cepstrum is written as
z=x+q+r(x,n,q) (2)

where the perturbation vector q = I D FT[In(|H(w)|?)] rep-
resents the effect of linear filtering and the correction vector

r(x,n,q) = IDFT[in(1 + eDFT[n_q_,q)] ®)

represents the joint effect of linear filter and additive noise.

Based on the structural knowledge of degradation model,
CDCN attempts to solve two independent problems. The first
problem is that of estimating the environmental parameters,
q and r(x,n,q), characterizing the contributions of additive
noise and linear distortion. This is accomplished by using
The second

problem is estimation of the un-corrupted observation vector

EM techniques to compute the ML estimation.

x given the observed vector z and the estimated environmental
parameters q and r(x,n,q). MMSE parameter estimation is
used for this task. In effect, these two operations determine
the values of environmental parameters. When applied in an
reverse fashion, they produce an ensemble of compensated vec-
tors that best match, in the ML sense, the observed vectors in
the testing environment to the locations of VQ codewords in
the training environment, as shown in Eq.4

=Y K] (2 — @ — VK] (4)
k

where fi[k] is the weighting constant for Gaussian mixture
k at frame 1.

By applying CDCN, the acoustic features from telephony
utterances were mapped to a more uniform space, and LDA
was then applied to further optimize the feature space. The
LDA transformation matrix was calculated using the training
cepstra after CDCN mapping. The input and output acoustic
feature vectors were kept as 117 and 39 dim, respectively. The
CDCN+LDA system can dramatically reduce error rate from
28.4% to 19.1% (Table 3) without using a single telephony
training sentence. In addition, a telephony system using more
than 100 hours of telephony training data from different tasks

was built later, and the results were comparable to this tele-
phony CDCN+LDA system.

The speaker dependent systems were built and the results
are listed at Table 3. Consistently, CDNC+LDA system has
the best results.

The CDCN algorithm has the advantage that it does not
require a priori knowledge of the testing environment. Al-
though it is typically implemented on a sentence-by-sentence
basis, it can be accomplished in a modeless fashion for real-
time applications[6]. Since it does not assume acoustic simi-
larity among the test data, CDCN is ideal for applications in
which acoustic condition changes from sentence to sentence,
such as in telephony applications.

IV. Language Modeling

The language model for the proposed application would ideally
be trained and tested on spontaneous conversations recorded
during actual use of the system. In the absence of such a com-
plete system, we investigated the use of surrogate text sources
to obtain an approximation to the desired language model.
The designer of any language model for conversational speech
is faced with the difficulty of obtaining sufficient amounts of
representative text. Hundreds of millions of words are typically
necessary to compute adequate statistics. Although machine-
readable text corpora of this order of magnitude exist, they
consist largely of news reports, literary works, legal, techni-
cal, and business correspondence and similar ”written” sources.
Currently available spontaneous conversation corpora tend to
be much smaller. If a relatively small amount of text is avail-
able from a source that closely approximates the target appli-
cation, and larger amounts are available from a source that is
less similar to the target, then it may be possible to construct
language models from both sources and combine them to ob-
tain a better approximation to the target than either model
alone [3]. Let p1 be the probability for some word predicted by
the first model, and p2 the probability from the second model.
The first suffers from random error because it is estimated from
a small sample, the second suffers from bias because its sample
was taken from a different population. A linear combination
of the two,

p=wpr+ (1 —w)p2 (5)

represents a smoothing of the noisy first model toward the less
noisy but biased second model. Such a combination may pro-
duce a lower error rate than either original model alone. To
optimize the value of the weight w, however, it is necessary
to use an additional corpus which is more representative of
the target application than is either of the other corpora. We
started with a 2-million word corpus taken from the Switch-
board Corpus, consisting of spontaneous telephone conversa-
tions on somewhat restricted topics. We smoothed this with a
much larger corpus of over a hundred million words of prepared
text including news, office correspondence, and literary works.
Finally, to test the performance of the resulting mixture mod-
els, we generated a small amount of text in an arrangement
intended to simulate the target application. A one-way tele-
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Figure 2: Error rate vs. language model mixing weight for
spontaneous speech intended for a recognizer.

phone connection enabled one participant, side A, to hear side
B, but side B did not hear the speech of side A. That speech
was, instead, fed into a speech recognition program and side
B only saw the output of this program. Both sides of the
conversation were recorded at a 4.5-KHz bandwidth for later
off-line processing. The three corpora differed noticeably in
style. For example, the probability of a sentence beginning
with ”I” was much higher in the Switchboard corpus than in
the large prepared-text corpus, as was the frequency of conver-
sational phrases such as ”you know”. The test corpus recorded
in the simulated hearing-impaired situation contained requests
for repetition when the recognizer made errors, which did not
occur in either of the training corpora. The graphs below show
the word error rates for the two sides of the conversation for
various values of the mixing weight w. The value 1 means that
only the Switchboard model was used, and 0 means that only
the large, prepared-text model was used. Side A, the ”hear-
ing” participant, was aware that the other side, the "hearing-
impaired” participant, was using a speech recognition system.
Side A, therefore, tended to speak in a deliberate manner ap-
propriate for automatic speech recognition. Side B, however,
knew that the other participant listened directly, without the
aid of a recognizer. Side B, therefore, spoke in a more casual
style. Both sides were recorded, however, and then processed
through a speech recognizer later off-line to get the results
shown in the figures. The error rates clearly reflect the differ-
ence in speaking styles. In both cases, nevertheless, mixtures
of the two language models produced lower error rates than
either corpus alone.

It may be hoped that by collecting data more representative
of the actual application, and possibly restricting the topics in
some way, the error rates could be pushed down further.

V. Conclusion

Helping hearing-impaired telephone users by means of auto-
matic speech recognition is a challenging opportunity. The
conditions are adverse: limited bandwidth, variable channel
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Figure 3: Error rate vs. language model mixing weight for

spontaneous speech intended only for a human listener

characteristics, spontaneous conversational speech. Concerted
application of state-of-the-art algorithms including adaptation
to speaker and channel, together with a large set of acoustic
prototypes, can bring acceptable accuracy within reach for read
speech - we achieved a word error rate of 10.96%. It is also
noteworthy that although other signal processing methods suf-
fered significant loss when going from clean band-limited data
to real telephone data, CDCN processing was able to compen-
sate for telephone channel distortions, making it unnecessary
to train on actual telephone data.

Although spontaneous conversation poses additional difficul-
ties, these can be at least partly solved by improved language
modeling. Design of the dialog to minimize LM perplexity, and
cooperative users aware of the system’s requirements should

further improve accuracy.
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