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ABSTRACT

This paper presents a two-step model for the symbolic
coding and generation of intonation. First, the F, curve is
reduced to a series of pitch target points that capture the
macroprosodic information of the utterance. Target points
are then converted into a sequence of labels. Generation is
achieved through the reverse steps. The model is language
independent and requires no prior training on the data. We
discuss the influence of the number of categories on the
precision of fit, and show, by an evaluation on a large
multilingual corpus (4 hours 20 minutes of speech, 50
speakers, 5 languages) that a model composed of three
ascending and three descending categories, plus a category
for small or null movements enables a regeneration of ca.
99% of points at less than 2 ST than the original. Given that
the model is capable of various improvements, it seems a
good candidate for practical applications.

1. INTRODUCTION

Several systems of symbolic coding of intonation have been
proposed, but so far, automatic labeling and generation from
labels are still an open issue. An important feature of coding
systems that may not have received much emphasis is
reversibility, that is, the possibility of re-generating an F|
curve perceptually identical to the original from the extracted
prosodic labels.

Prosodic coding systems can be categorized in two types:
linguistic systems, such as ToBI, which encode events of a
linguistic nature, and phonetic systems, such as HLCB [8] or
INTSINT [5], which aim only at providing a purely
configurational description of the macroprosodic curve
without interpretation. It is obvious that the first category
poses greater problems for the automatisation, although work
is underway in that area ([1] [7]). The second category,
easier to implement, is of course less interesting in linguistic
terms, but can still contribute to the development of labeled
corpora useful for many applications. In addition, it can be
seen as a first step towards automatic labeling of systems like
ToBI, and can be a help in the development of such systems
for languages other than American English. However, even
for phonetic systems, labeling, generation and reversibility
are far from achieved. Work is underway (e.g. [8]), but large-
scale evaluations are not yet available.

In this paper, we present a systematic study of
configurational models for encoding intonation contours. In
particular we will address the question of the minimal set of
labels or categories necessary to achieve reversibility with a

good precision. An arbitrary level of precision can be
trivially reached by increasing the number of categories, but
usable systems must obviously aim at keeping this number
minimal.

We use a two-stage model for coding:

1. First, the F, curve is stylized by means of
target  points which  capture  the
macroprosodic information of the utterance

[5].

2. Target points are then converted to a
sequence  of labels constituting a
categorization of the pitch movements.

The pitch target points can be extracted automatically from
the signal ([6] see also [5]). Once interpolated by a spline
curve they produce an F, contour undistinguishable from the
original (apart from a few detection errors that must be
corrected by hand). Other stylization methods have been
proposed, but the target point stylization seems particularly
simple and economical.

Generation is achieved through the reverse steps: the
sequence of labels is converted to target points, which are
then interpolated by a spline curve to produce a smooth F
curve. Reversibility means that the regenerated F, curve
should be close to, and if possible not distinguishable from
the original.

2. MODEL

In a preliminary study [2], we showed that the distribution of
target points (in semi-tones or STs) is approximately normal
for a given speaker, although a strict normality assumption
(as measured for example by Shapiro-Wilks' W test) must
most often be rejected. There is a considerable variation
among speakers in terms of skewness and kurtosis, and there
is (mostly for female speakers) very often an excess of
extreme values, especially in the infra-grave.

However, despite this variability, we will use the normal
distribution as a mathematical model because of its
simplicity. We will make further simplifications:

1. We will assume that target points are drawn
from a normal distribution independently
from each other, although there is in fact
more correlation between consecutive target
points than what would be expected just as a
result of the shape of the distribution [2].



2. We will also neglect the relationship between
time intervals and pitch movements, although
there is some correlation between the two.

3. Finally, we will neglect resetting after short
pauses, and downdrift effects.

Due to these simplifications, the results presented here
constitute a baseline subject to improvement.

The mathematical model that we propose is fairly simple,
and can be extended to any number of desired categories. Of
course, increasing the number of categories trivially results
in a better fit of the generated F, curve. There is therefore a
trade-off between the number of symbols and the quality
aimed at. In section 3 we will discuss criteria for deciding of
such a trade-off.

For any number n of categories C,, ..., C,, the problem can
be stated as follows. Let x, be the observed frequency of the
current point, x,, the observed frequency of the next point,
and C, the category of the pitch movement between the two
points. A generation model consists in a series of functions
S ..., [, that predict a frequency for the next point given x,
for each category C,. For each of these functions there is an
error between the predicted value and the observed value:
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Given a sequence of N target points, the coding that results in
the best fit is the sequence of categories that minimizes the
mean squared error:
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It can be shown that, under the assumption that the target
points are drawn from a normal distribution independently
from each other, there is an optimal generation model for any
number of categories. We will start with the simplest case,
which uses only two categories, let us say H and L, coding
ascending and descending movements respectively. In the
discussion below, we will use z-transformed frequencies, for
the sake of simplicity.
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Figure 1. Distribution of ascending points
Let us assume a point x,. If it is known that the next point is

ascending, it must be drawn from the part of the normal
distribution on the right of x, (shaded area on Figure 1).

The density function for this ascending point is:
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where N(x) is the standard normal law, and ®(x) its
distribution function.

The error is minimal when for each point x, the next
(ascending) point is computed as the expectation value of the
density function F, i.e.
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If the next point is descending, a similar expectation value
can be computed:
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Figure 2 shows a plot of both functions H[x] and L[x].
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Figure 2. Plot of expectation values H[x] and L[x]

The reasoning above can be extended to any number of
ascending and descending categories. We will explore a
series of even and odd models M,. Even models are models
in which k/2 categories H, ... H, code the possible target
values above any given frequency x, and the same number of
categories L,, ... L, code the values below x. Odd models
are models in which in addition to the categories above, a
central band, that we will call S, can be used in order to code
small or null pitch movements.

Extending the model to an arbitrary number of categories
amounts to finding an optimal series of bands that partition
the values above and below any given x, such that when the
next point x,, belongs to a band C, generating it as the
expectation value C[x] for that band minimizes the error. For
lack of space, we cannot detail here the mathematics
involved, and simply show in Figure 3 the bands (dotted
lines) and expectation values (solid lines) for model M,
comprising 7 categories: L,, L, L, S, H , H , H,.



Figure 3. Optimal bands and expectation values (model M.).

To summarize, for any model M,, if x, is the observed
frequency of the current point, generating the next point as
Clx] if it belongs to band C, minimizes the overall mean
squared error. However, when generating a complete
sequence iteratively, errors are cumulative, i.e. a coding
decision which may be optimal for a subsequence 1, ..., i can
be not optimal for the entire sequence 1, ..., N, and all the
possible sequences should be tried in order to be sure to find
the optimal one. In practice, we can simplify the problem and
reduce the computations by making coding decisions that
minimize the error on the next point without significant loss.

3. EVALUATION METHOD

The successive models were evaluated on a large
multilingual prosodic corpus [3]. The corpus is composed of
passages of ca. 20 seconds read by 10 different speakers (5
female, 5 male) in five languages (English, French, German,
Italian, Spanish), ie. 50 speakers altogether. For each
language, there are 40 different passages of 5 sentences, but
each speaker reads only a subset of them. The total duration
is 4 hours 20 minutes. Duration per language ranges from
36.5 minutes (French) to 73 minutes (German).

The recordings were borrowed from the EUROM 1 database
developed in the SAM project [4], and the stylization was
done automatically using the MOMEL algorithm ([6] [5]).
The entire stylized corpus was then verified manually and
the pitch target points were corrected when necessary (about
5% of cases) so that there was no audible difference between
the original and the stylized F,. Altogether, the corpus
contains 50360 pitch target points.

Eight models M, to M, were tested on the entire corpus. The
mean and standard variation of each passage were used as
parameters for the theoretical normal distribution used in the
models.

Two measures were computed. Firstly, we used the mean
squared error between the original target points and the
regenerated target points in ST, which is a classical measure
of quality of fit. However, this measure averages all errors,
whereas, from a perceptive point of view, many small errors
are less important than a small proportion of large ones,

which may change radically the linguistic intention of the
utterance. We randomly probed passages from the corpus
and determined that when points are generated at less than 2
ST from the original, there was no change of linguistic
intention. The largest differences can be audible under
careful listening conditions, but are not perceived in the
normal speech flow and in any case have no linguistic
impact. We therefore use as a second measure the proportion
of target points regenerated at less than 2 ST from the
original.

4. RESULTS

As expected, the results improve with the number of
categories, as shown in Table 1.

M, | M | M | M| M | M|[M|M

MSE | 4541296 | 1.76 | 128 | 92 | .74 | .58 | 48

<2ST | .694 | .785 | .905 | .947 | .977 | .987 | 992 | .994

Table 1. Results per model (all languages)

For a given model, some languages are slightly better
regenerated than others. The ranking of languages according
to performance is the same for all models. Figures 4 and 5
show for example the mean squared error and proportion of
points under 2 ST from the original per language for M.
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Figure 4. Mean squared error (ST) per language (model M.).
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Figure 5. Proportion of points generated at less than 2 ST
from the original, per language (model M.).

The two measures are not completely equivalent; for
example, Spanish has the smallest mean squared error, but
ranks only second in terms of points under 2 ST from the
original.




5. DISCUSSION

It is clear that a model based on only two categories, which
places only about 2/3 of points at less than 2 ST from the
original, is not usable for any purpose. At the other end of
the scale, the model M enables an almost perfect restitution
of the original curve, at the expense of a much larger number
of categories. It is therefore an empirical question to decide
which model to chose for practical applications.

However, we should keep in mind that due to some
simplifying hypotheses, the results presented here are a
lower bound, and that the models could improve if additional
phenomena were taken into account.

The most important factor seems to be the shape of the
distribution. We assumed a normal distribution for all
speakers, whereas [2] many speakers show various degrees
of skewness and kurtosis. The analysis of residuals shows
that the mean squared error is strongly correlated to the
values of skewness and kurtosis, and that the most badly
modeled points are points that are extreme, especially in the
infra-grave for female speakers (Figure 6).
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Figure 6. Errors > 2 ST (left) and < -2 ST (right) vs. z-
transformed frequency (all Spanish speakers, model M)

Correcting the model to take into account the shape of the
distribution for each speaker is likely to improve the results.
For example, in Spanish modeled with M, more than half of
the errors over 2 ST in absolute value are due to a single
speaker, who has the most extreme skewness and kurtosis
values. If that speaker were removed, the proportion of
points modeled at less than 2 ST from the original would
increase from 98.8 % to 99.5%.

Given this possibility of improvement, it seems that the
model M, which currently reaches ca. 99% of points at less
than 2 ST from the original, constitutes a satisfactory
compromise between the precision of fit and number of
categories. In addition, this model is conceptually simple in
terms of categories, since the three categories in each
direction can be see as a "normal”, medium movement
category, in conjunction with categories for "smaller" and
"larger" movements (we could use mnemonic labels such as
L+, L, L—, S, H-, H, H+ to reflect these distinctions).

6. CONCLUSION

The model presented in this study enables a reversible
symbolic coding of infonation with a satisfactory precision
of fit by using three symbols for categorizing each direction
of pitch movements, plus a symbol for very small or null
pitch movements. The model is language independent and
requires no prior training on the data. It has been tested on a
large corpus comprising 4 hours 20 minutes of speech in five
languages, involving fifty speakers. The precision achieved
is around 99%, and the model is likely subject to
improvement by taking into account the speaker's pitch
target point particular distributions. It therefore seems that
the proposed model could be of some use for practical
applications such as automatic prosodic labeling of large
speech databases.
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