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ABSTRACT

The categorical perception (CP) of syllable-initial stop
consonants has been intensively studied using psycho-
physical procedures over many decades. However, compu-
tational models consisting of an auditory ‘front end’ and
a learning system as a ‘back end’ convincingly mimic the
essentials of CP. Unlike real listeners, such models can be
systematically manipulated to uncover the basis of their
categorisations. In this paper, we explore the use of mod-
ern inductive learning techniques in simulating CP.

1. INTRODUCTION

A wvital part of understanding speech perception is un-
derstanding the transformations which relate physically-
continuous acoustic stimulation to the discrete code of
phonetic percepts. It is immeasurably easier to observe
the restructuring of information in a software model of
auditory processing than in experiments using human or
animal listeners. We have worked for several years on such
models, trying to understand the mechanisms of the cat-
egorical perception (CP) of voicing in syllable initial stop
consonants [1, 2, 3, 4]. Our models have a physiologically-
realistic ‘front end’ producing simulated firing patterns in
response to synthetic speech sounds at the level of the aud-
itory nerve. A trainable neural network ‘back end’ then
learns to categorise these patterns. We find that subtle as-
pects of the psychophysical behaviour of real listeners are
mimicked by these models.

However, the neural network paradigm has fundamental
shortcomings in terms of learning theory, which mean that
our results could be artefactual. Most important, there is
only one instance of each specific synthesised speech token,
8o that networks are inevitably undertrained. Here we use
the modern inductive inference technique for small sample
sizes of support vector machines [5] to simulate CP.

The voiced/unvoiced distinction is fundamental to speech
communication, playing a major contrastive role in all lan-
guages. As such, it has received much attention in stud-
1es of speech perception. In early work, Liberman and
his colleagues [6] investigated the perception of voicing
in syllable-initial stop consonants by English listeners as
voice-onset time (VOT) was varied and showed it to
be ‘categorical’. That is, perception changes abruptly
from ‘voiced’ to ‘unvoiced’ as VOT is increased uniformly
and discrimination is far better between categories than
within a category. As a consequence, labelling (identi-
fication) functions are non-linear, having a steep region
around the category boundary, and discrimination func-
tions are non-monotonic, peaking at the boundary. There
is also a phoneme-boundary shift with place of articula-
tion. Taking the 50% points on the labelling functions
as the voiced/unvoiced boundaries, then as the place of
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Figure 1: Labelling curves for syllable-initial stop con-
sonants varying in voice-onset time (VOT) for human and
chinchilla listeners, from Kuhl and Miller [8].

articulation moves from bilabial (/ba-pa/ VOT series)
through alveolar (/da-ta/) to velar (/ga-ka/), so the
boundary moves from about 25ms through about 35 ms
to approximately 42ms (e.g. [7]).

An intriguing finding is that such CP is also observed in
non-human listeners. This was first shown for chinchillas
by Kuhl and Miller [8] but has since been confirmed for a
number of animal species. Figure 1 shows labelling curves
from humans and chinchillas from [8] illustrating the steep
slope around the category boundary and the movement of
the boundary with place of articulation. Observed beha-
viours are remarkably close for the two different species:
chinchillas exhibit boundary values not significantly differ-
ent from humans (although the curves are less steep). This
convergence of behaviours has usually been taken to indic-
ate that categorisation is basic to the operation of animal
auditory systems, rather than relying on the existence of a
‘phonetic’ sub-system specialised for speech perception.

2. AUDITORY PREPROCESSING

The synthetic consonant-vowel syllables used in this study
were supplied by Haskins Laboratories. They are digitally-
sampled (rate 10 kHz) versions of those developed by Ab-
ramson and Lisker [9] and employed extensively in the
psychophysical experimentation reviewed above. They
consist of three series in which VOT wvaries in 10ms
steps from 0 to 80 ms, simulating a series of English, pre-
stressed, bilabial (/ba—pa/), alveolar (/da—ta/) and velar
(/ga—ka/) syllables.

We have used Pont and Damper’s [10] model (hereafter
the ‘P-D’ model) extensively as an auditory front-end. In-
put stimuli are passed through a filterbank designed to
mimic the physiological tuning curves of cat AN data, with
appropriate basilar membrane (BM) delay characteristics
and frequency rescaling reflecting the range of human hear-



ing. The filters are uniformly spaced in terms of BM place.
Mechanical-to-neural transduction, amplitude compression
and two-tone suppression are modelled phenomenologic-
ally. The original P-D model includes simulations of coch-
lear nucleus processing but here outputs are taken from
the auditory-nerve level, in the form of time of firing of
128 simulated auditory nerve fibres spanning the frequency
range 50Hz to 5kHz. The parameters of the model are
fixed according to physiological measurements (or other
direct evidence) where available and to fit observed gross
responses where relevant parametric, physiological know-
ledge is not available.

The P-D model outputs form the inputs to one of a variety
of learning systems. The mechanical-to-neural transduc-
tion component of the P-D model reflects the stochastic
nature of this process in the (real) auditory system. This
allows us to produce a data set for training the learning
system, even though we only have one example of each
stimulus for each VOT and place of articulation, simply
by reusing each stimulus repeatedly as input. However,
the P-D model is computationally expensive so, for prac-
tical reasons, we have limited this to 50 repetitions. Thus
we face (unavoidably) a small-sample size problem.

The stimuli were applied at time ¢ = 0 at a simulated level
of 65 dB sound pressure level (SPL). Activity before t = 0
is spontaneous. Damper et al. [1] confirm that the re-
sponses (‘neurograms’) are an excellent fit to the available
physiological data. However, neurograms are not suitable
for input to the neural network to be trained to categorise
the auditory patterns. Retaining detailed information on
the time of firing of each (simulated) spike implies a very
high data rate and, consequently, a learning system with
too many parameters to be estimated given the paucity
of the data. To effect data reduction, spikes were coun-
ted in a (12 x 16) = 192-cell analysis window stretching
from —25 ms to 95 ms in 10 ms steps in the time dimension
and from 1 to 128 in steps of 8 in the CF dimension.

3. PERCEPTRONS

We have previously employed a variety of neural network
architectures as the back end, including associative net-
works [4]; competitive-learning networks [3]; multilayer
perceptrons [1, 4] and single-layer perceptrons (SLPs) [3].
All are capable of mimicking the behaviour of real listen-
ers with more or less fidelity. However, because of their
simplicity, we focus here on SLPs.

Three SLPs were constructed: one for each of the bilabial,
alveolar and velar series. Each had 192 inputs and a single
output node (sigmoidal activation function). Networks
were trained by back-propagation to produce a ‘1’ output
on the 50 repetitions of the 0ms VOT responses (audit-
ory patterns from the P-D model) and a ‘0’ output on
the 50 repetitions of the 80ms VOT responses. The out-
put activation for unseen patterns can thus be construed
as signifying the degree of voicing. Training on the end-
points in this way mimics the training of Kuhl and Miller’s
chinchillas [8]. As in the latter study, generalisation was
then tested on the full range (0 ms to 80 ms in 8 steps) of
responses.

Figure 2 shows typical labelling functions obtained by av-
eraging output activations over the 50 stimulus presenta-
tions for each of the three places of articulation. Labelling
functions like these were consistently obtained over many
repetitions of the training. They closely mimic results from
human and animal listeners, even replicating the shift of
category boundary with place of articulation. Boundaries
are at approximately 17ms, 30ms and 42 ms for the bi-
labial, alveolar and velar series respectively — very close to
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Figure 2: Mean output activation versus VOT for SLPs
trained on neurograms from 0 ms and 80 ms endpoints.

those for real listeners. Thus, the neural model is captur-
ing the ‘essence’ of CP. The behaviour is emergent — it
is not explicitly programmed into the simulation — which
strengthens the feeling that the effects are quite basic to
the way these stimuli are perceived. It is surely suggestive
that very similar results are obtained from very different
human, animal and machine listeners.

Unlike real listeners, a computational model can be ana-
lysed to determine the basis of its behaviour. A major
attraction of the SLP is that we can straightforwardly
identify the areas of the neurogram which contribute to
the categorisation behaviour: all connections are direct
from the neurogram to the SLP’s output, without inter-
vening hidden units. In [3], we present the results of such
an analysis. We find that categorisation can be explained
by mechanism in which higher levels of the auditory sys-
tem focus on a particular region of auditory nerve time-
frequency activity and aggregate spike activity in this re-
gion. But the SLP has some shortcomings as a learning
system which mean that these findings need to be treated
with caution.

First, we have very sparse training data so are they suffi-
cient? Several authors (notably [11]) have considered the
bounds on the required number of training examples to
produce valid generalization for nets of a given size, but
(because of the agsumptions made) these are generally “too
loose, leading to impractical results” [12, p.238]. A well-
known rule of thumb [13] is that there should be 10 times as
many training examples as adjustable parameters, imply-
ing a need here for about 1930 training instances whereas
we have only 2 (endpoints) x 50 (repetitions) = 100 aud-
itory patterns. Hence, we confront a problem for statist-
ical learning of small sample size. Second, the sampling
statistics of the training data reflect the (Poisson) statist-
ics of the mechanical-to-neural transduction taking place
in the hair cells of the cochlea, which will tend to pro-
duce training data clustered around the expected (mean)



value. However, from the learning theory perspective,
we would prefer data close to the category boundary
to be well represented. Third, perceptron learning has
no explicit control of generalisation. Further, the tech-
nique of supervised training on the VOT endpoints pre-
disposes the nets to produce something close to the ‘cor-
rect’ 1/0 voiced /unvoiced values at extreme VOTs. In par-
ticular, it means that each net may be doing no more
than simply placing the boundary at the midpoint of VOT
between the (average) endpoint exemplars, albeit in a 192-
dimensional space.

Mitigating these objections, however, the SLPs do produce
very realistic behaviours and do so consistently indicating
that the issues detailed above are not fatal to the model-
ling enterprise. Nonetheless, it is prudent to overcome as
many of these shortcomings as possible. Thus, we treat
the results outlined above as preliminary, and seek to con-
firm them using the modern inductive inference technique
of support vector machines (SVMs) [5, 14].

4. SUPPORT VECTOR MACHINES

To address some of the shortcomings of SLPs (e.g. lack of
capacity control), we use SVMs [5, 14]. These incorporate
the structural risk minimisation principle, derived from the
theory of small sample sizes. In addition to enforcing cor-
rect classification, a further constraint maximises the mar-
gin, i.e. the distance between the separating hyperplane
and the nearest data point of each class.

The distance of a point x from a hyperplane (w, b) is:

where w and b can be interpreted as the weight vector and
bias of a formal neuron. For a two-class problem, as here,
the margin is given as:

p((W,b), X) = mini{(wa b)7 Xi} +minj{(W7 b)7 Xj}
x; €A, z; €EB

Maximising p() produces good control of generalisation
ability and guarantees a unique solution to the problem,
unlike SLPs.

Three SVMs (bilabial, alveolar and velar) were construc-
ted. They were trained using the same 100 patterns (50 re-
petitions of responses to the 0ms endpoint and 50 repe-
titions of responses to the 80ms endpoint) as the SLPs.
A straightforward SVM was used with an architecture equi-
valent to an SLP [14] with a hard-limiting (signum func-
tion) threshold unit on the output:

f(x) = sgn(w - x +b)

and no additional capacity control [5].

The results with this hard classifier are shown in Figure 3.
Each of the three curves depicts the average classification
over each of the 50 repetitions for the relevant series. Tak-
ing the 50% midpoint between voiced and unvoiced to rep-
resent the category boundary gives values of 16 ms, 30 ms
and 40 ms for the bilabial, alveolar and velar series respect-
ively, comparing well to the values for the SLP and for real
listeners.
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Figure 3: Labelling curves for the hard SVM classifier.
Category boundaries are essentially identical to those for
the SLP.

The SVM implicitly realises a form of data selection. Ounly
input patterns with non-zero Lagrange multipliers — the
support vectors, (SVs) — will contribute to the model.
Thus, the SVs are the subset of patterns conveying the
vital information about the category boundary. These will
lie on the boundary of the maximised margin. The two
margin boundaries (one for each class) are parallel, and the
optimal separating hyperplane (OSH) is parallel and equi-
distant to both. These three hyperplanes fully characterise
the separation of the classes, and so provide a conveni-
ent method for knowledge extraction. We use components
of the normal vector to the hyperplane(s) — actually the
weight vector w — for this purpose. This 192-dimensional
vector uniquely characterises the knowledge extracted by
the model — which differentiates voiced from unvoiced cat-
egories. The percentage of support vectors for each SVM
was 41%, 37% and 45% for bilabial, alveolar and velar re-
spectively, divided roughly half and half between the voiced
and unvoiced categories.

To visualise the information extracted by the model,
squared components of the normal-to-the-OSH vectors are
plotted in grey-scale form in Figure 4. The crucial inform-
ation (dark regions) lies in the low frequency (first formant
transition) region just after acoustic stimulus onset. This
parallels the finding with the SLPs [3]. Again, the precise
location of this region shifts in the three cases (bilabial,
alveolar, velar) in the same way as the boundary point for
the SLPs and for real listeners.

5. CONCLUSIONS

The categorisation of syllable-initial stops into voiced and
unvoiced categories has been intensively studied in hu-
man and animal listeners. More recently, attention has
turned to the perception of such synthetic speech sounds
by machine. A variety of computational learning systems is
capable of mimicking the categorisation behaviour of real
listeners, including the systematic shift of the phoneme
boundary with place of articulation. This behaviour is
emergent: it is not programmed into the simulation but
arises as a consequence of aggregating time-frequency in-
formation in auditory-nerve firing patterns. The key prop-
erty of software models of audition is that they can be ana-
lysed — to extract the learned phonetic knowledge which
underpins their behavior — in a way which is not possible
with real listeners.

We have described the use of SLPs and SVMs to simu-
late the categorisation behaviour of real listeners. Analysis
of the averaged activity of each SLP’s weighted connec-
tions and of the normal-to-the-margin vector of the SVMs
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Figure 4: Squared normal-to-the-OSH vectors in grey-
scale form for the three stimulus series.

reveals that highly-localised low-frequency information in
the time period shortly after stimulus onset is sufficient to
predict the category boundary. Thus, a compact explan-
ation of the basic phoneme-boundary effect is available.
We stress that the full range of perceptual phenomena as-
sociated with the categorisation of these speech sounds is
rather more complex than it has been portrayed here. To
keep our treatment concise and focused, we have limited
consideration to the most fundamental aspects of CP.
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