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ABSTRACT

In this paper we describe a novel approach to address the issue of
different sampling frequencies in speech recognition. In general,
when a recognition task needs a different sampling frequency
from that of the reference system, it is customary to re-train the
system for the new sampling rate. To circumvent the tedious
training process, we propose a new approach termed Sampling
Rate Transformation (SRT) to perform the transformation
directly on speech recognition system. By re-scaling the mel-fil-
ter design and filtering the system in spectrum domain, SRT con-
verts the existing system to the target spectral range. New
systems are obtained without using any data from the test envi-
ronment. Preliminary experiments show that SRT reduces the
word error rate from 29.89% to 18.17% given 11KHz test data
and a 16KHz SI system. The matched system for 11KHz has an
error rate of 16.17%. We also examine MLLR and MAP. The
best result from MLLR is 17.92% with 4.5 hours of speech. In
the speaker adaptation mode, SRT reduces the error rate from
15.48% t0 9.71% given 11KHz test data and a 16KHz SA system
while the matched 11KHz SA system has an error rate of 9.33%.

1. INTRODUCTION

It is well-known that speech recognition can achieve the best per-
formance when test conditions match training conditions. In gen-
eral, these conditions include acoustic environments ([e.g.[1,2]),
speakers (e.g. [3,4]), application corpora (e.g. [5]), etc. In this
paper we investigate an issue of sampling frequency mismatch.
The frequency mismatch inevitably leads to severe performance
degradation in speech recognition. In one of our experiments
described below, the word error rate of a 16KHz speaker-inde-
pendent (SI) system can increase from 14.74% to 29.89% when
the sampling frequency of the test data switches from 16KHz to
11KHz.

Practically, when a speech recognition system is deployed, it is
designed for a specific data sampling frequency. When another
sampling rate is considered, it is customary to re-train the system
for the new specific sampling rate. While it is straightforward to
transform signals and re-train systems, this presents two major
problems in many real-time applications. First, extra efforts are
needed to supply training data at the new sampling frequency by
either collecting new data or transforming existing training data.
Second, the training process must be repeated to generate new
system parameters.

For systems that have undergone calibration processes such as
speaker adaptation or acoustic adaptation, it is even more tedious
to repeat them, let alone the complication of maintaining multi-
ple prototypes. Therefore, an efficient methodology that can
accomplish sampling frequency change without any burden of
re-training becomes very desirable in many field applications.

In this paper, a novel algorithm, Sampling Rate Transformation
(SRT), is proposed as a model-based solution to the issue of fre-
quency mismatch. The SRT algorithm is to be evaluated at three
different frequencies: 16KHz, 11KHz, and 8KHz. In Section 2,
Sampling Rate Transformation will be thoroughly described, fol-
lowed by the description of experiment systems and evaluation
database along with comparative results in Section 3. Then, con-
clusion and summary will be presented.

2. SAMPLING RATE TRANSFORMATION

Interpolation and decimation have been used to change the sam-
pling rate for data. However, the frequency conversion process is
predominantly applied directly to waveform signals. In contrast,
sampling rate transformation (SRT) performs “downsampling”
or “upsampling” directly on a recognition system while leaving
the sampling frequency of test data unchanged. In other words,
the fundamental idea of sampling rate transformation is to con-
vert a cepstral-based system that is designed for one particular
sampling rate to one system that can be used for another sam-
pling frequency.

Theoretically, the SRT algorithm can be applied to both down-
sampling and upsampling cases, like its counterpart techniques
in time-domain. However, due to the fact that downsampling
serves much more practical and useful purposes than upsampling
for speech recognition, we mainly focus on the case of down-
sampling in the following discussions.

2.1. Frequency Transformation On Cepstral-
Based Signal Data

Let {x[¢t], t = 1, T }be a sequence of vectors of mel-fre-
quency cepstral coefficient (MFCC) [6] for an utterance of
length T with a sampling frequency, f ref The log-spectral rep-

resentation of the signal can be written as

X[¢] = IDCTI{x[1]}, t=1,T (1



where IDCT is the inverse discrete cosine transform (IDCT). In

this case, each component in X [¢] is actually the band energy
from each individual mel-filter.

The downsampled version of the same signal for the new fre-

quency, f new* 40 be obtained by discarding all filters above

the new Nyquist frequency, f new/ 2,as

Y[t] =WeX[t], t=1T 2

where W is a rectangular-window filter with a cutoff frequency at
/2.

Fnew

Note that Equation (2) is equivalent to filtering the signal in
spectral domain with a rectangular window and masking it with
an energy floor in the log-spectral domain for filters beyond the
cutoff frequency.

Finally, the MFCC vectors for the downsampled version of sig-

nal with a new frequency, f new Can be computed by discrete

ew
cosine transform (DCT) as

ylt] = DCT{Y[t]}, ¢t= 1T 3

Furthermore, based on Equation (1), (2), (3), we can re-write the
overall transformation as

DCT{Y[1]}

DCT{W e IDCT{x[t]}}
= Z.W. é.x[t]

ylt]
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where A and € are matrices for DCT and IDCT, respectively. In
other words, the frequency transformation can be characterized
by matrix operation as shown in Equation (4).

It is noted that the downsampled cepstral vectors

{y[t], t = 1, T } share the same filters as the original cepstral

vectors, {X[t], t = 1, T }. What this implies is that the design
of mel-filters will remain the same regardless of the target sam-
pling rate. To this end, a reference sampling frequency, usually
the one of training data, is used to design the cutoff frequencies
for all mel-filters. When test data sampled at another sampling
frequency is to be processed, data points from FFT can get
aligned to their corresponding filter designed based on the refer-
ence frequency with a linear warping.

2.2. Frequency Transformation On Cepstral-
Based Gaussian Models

Equation (4) describes frequency transformation for individual
static cepstral vectors and also serves as a fundamental block for
frequency transformation. However, when it comes to the speech
recognition models, more issues need to be addressed. Many
state-of-the-art recognition systems utilize static cepstral vector

and its first-order and second-order derivatives as the features. In
addition, many systems seek to reduce speaker and environment
variability by utilizing cepstral mean normalization (CMN) plus
energy normalization. Therefore, in the following section, we
derive the sampling rate transformation on a system that also
employs dynamic cepstral features from time derivatives and
CMN along with energy normalization of automatic gain control
with respect to maximum value (AGC-max).

Let {ﬁx[i], i =1,M} and {ix[i], i = 1, M } represent

the mean vectors and co-variance matrices of a set of M Gauss-
ian distributions in a recognition system with a sampling fre-

quency, f ref -

T
Let X'[t] = [)_c'c[t], )_c'd[t], )_c'dd[t]] be the extended vector
normalized with CMN and AGC-max. Furthermore, let AGC-
max be writtenas x') = g - x + b(max(x)) . The static part

of the extended observation X'[#] can be expressed as

® (1 = Ge (xc[t] —% . erc[t] + E,.ef) (5)

§0 ... f(max(xo),mean(xo))
where G =01 ... 0 l_’ref = >
00...1

From Equation (4) and (5), the corresponding normalized vector
for new sampling rate can now be re-written as

y [ = (_}050((_}’1o;‘c'ct—l_),.ef)+(_}°l_)new (6)

Note that b’, ef and bn ew A sentence-based shift vectors from

AGC-max for the original and new sampling rates, respectively.
Similarly, the corresponding dynamic features for new frequency
can be written as
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For further simplicity, let sentence-based shifts, Eref and

b

and dynamic features in the mean vectors for new frequency can
be expressed as

new » be replaced by global shifts, b, of and b, ,,, - The static
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It can be easily shown that the co-variance matrix for new fre-
quency can be described as

e U
Zy[z]=GOSOG oY [i]le(GeSeG ) ()
3. EXPERIMENTAL RESULTS

Experiment Setup. A state-of-the-art IBM large-vocabulary
continuous speech recognition [7] is used in following experi-
ments. Both training and test data are originally collected at
22KHz. Experiments are carried out for 3 different processing
frequencies, including 16KHz, 11KHz, and 8KHz. The test data
consists of 4 male and 6 female speakers. Each speaker records
61 utterances from a specific business office task. Each speaker
also records 270 utterances for experiments of speaker adapta-
tion.

3.1. Baseline SI Systems

Two speaker-independent (SI) baseline systems are established,
one for 16KHz sampling frequency and one for 11KHz. Test data
is also processed at the corresponding frequency. The word error
rates (WER) for 16KHz and 11KHz baseline systems are
14.74% and 16.17%, respectively, as illustrated in the first two
results in Table 1.

The baseline results reveal extra benefit from using wider-band
information as observed in the 16KHz system. The 16KHz sys-
tem is, thereafter, used as the reference system while the 16KHz
frequency is referred to as the reference frequency in this paper.
It is noted that the 16KHz and 11KHz systems share the same
mel filters design based on 16KHz.

3.2. SRT

When the test data are processed at another frequency for other
applications, a frequency mismatch occurs. While we maintain
the same mel-band design used in the 16KHz system for the
11KHz data, the lack of high frequency component can still
cause severe performance degradation.

Table 1 shows that this mismatch in frequency leads to a WER
of 29.89%, twice the WER in reference system. When the SRT
algorithm is applied to downsample the reference recognition
system for 11KHz data, performance improves to 18.17% with
SRT transforming only the mean vectors of Gaussian distribu-
tion. It is interesting to note that SRT does not get extra improve-
ment by transforming both mean vectors and co-variance
matrices. This is simply due to the fact that our reference system
uses diagonal co-variance matrices.

System Signal Processing | WER (%)
for Test Data

16KHz - S1 16KHz 14.74

11KHz - SI 11KHz 16.17

16KHz - SI 11KHz 29.89

SRT - SI 11KHz 18.17
(Mean Only)

SRT - SI 11KHz 19.01
(Mean & Var)

Table 1: Frequency mismatch and SRT in SI systems
3.3. Adaptation Using MLLR and MAP

We would like to apply other model-based approaches such as
MLLR [4] and MAP [3,8] for the issue of frequency mismatch.
An adaptation data corpus with 1800 utterances (4.5 hours) from
84 speakers is processed at 11KHz. For the best performance, we
also assume the 16KHz-processed data is available so that the
much better alignment can be computed from the 16KHz refer-
ence system.

Table 2 lists the comparison of MLLR, MAP and MLLP+MAP.
With the use of 4.5 hours adaptation data, MLLLR generates the
best result, 17.92%, which is comparable to SRT. The observa-
tion that the use of MAP does not offer extra improvement indi-
cates the mismatched 16KHz system is not a good initial model
with such relatively small amount of training data.

System Signal Processing | WER (%)
for Test Data

16KHz - SI 16KHz 14.74

11KHz - SI 11KHz 16.17

16KHz - S1 11KHz 29.89

SRT - S1 11KHz 18.17
(Mean Only)

SRT -S1 11KHz 19.01
(Mean & Var)

MLLR - SI 11KHz 17.92

MAP - SI 11KHz 19.06

MLLR+MAP -SI 11KHz 18.59

Table 2: Comparison of MLLR, MAP, SRT in SI system

3.4. Speaker Adaptation And Narrow Band

To study the performance of SRT in conjunction with speaker
adaptation, we establish a speaker-adapted (SA) system using
MLLR+MAP with 270 adaptation utterances for each speaker.
For each sampling rate, we compute a SA system. Table 3 com-
pares the performance of SRT in conjunction with speaker adap-
tation. It shows that SRT is also very effective in the speaker
adaptation mode by reducing the WER from 15.48% to 9.71%,
comparable to those from the matched systems. It is also inter-
esting to note that the difference between 16KHz and 11KHz
system is virtually flattened after speaker adaptation.



System Signal Processing | WER (%)
for Test Data
16KHz - SA 16KHz 9.28
11KHz - SA 11KHz 9.33
16KHz - SA 11KHz 15.48
SRT - SA 11KHz 9.71

Table 3: Comparison of SRT in SA systems

We also would like to examine SR'1' in narrow-band applications
where the sampling frequency is set to 8KHz. Table 4 shows that
the frequency mismatch between 8KHz and 16KHz degrades the
performance to 28.93%, much worse than its 11KHz-16KHz
counterpart which is 15.48%. SRT is shown to be able to remove
the adverse impact from frequency mismatch with an impressive
performance of 10.60%.

System Signal Processing | WER (%)
for Test Data
16KHz - SA 16KHz 9.28
8KHz - SA* 8KHz 10.83
16KHz - SA 8KHz 28.93
SRT - SA 8KHz 10.60

Table 4: Performance of SRT in 8KHz with SA.
*Note: the 8KHz-SA system was obtained using slightly dif-
ferent mel-filters but it is a useful benchmark.

3.5. Gender-Dependence And SRT

It is interesting to examine the correlation between frequency
mismatch and speaker’s gender. Table 5 shows the breakdown
results based on speaker’s gender in SA systems. Not surpris-
ingly, it reveals that female speakers are likely to be more sus-
ceptible to the frequency mismatch than male speakers. We also
observe similar comparisons in the SI systems.

System Test Total Male Female
Data WER WER WER
16KHz | 16KHz 9.28 8.48 9.82
11KHz | 11KHz 9.33 8.35 9.98
16KHz | 11KHz 1548 9.92 19.19
SRT 11KHz 9.71 8.36 10.67
8KHz* 8KHz 10.83 9.02 12.04
16KHz 8KHz 28.93 22.59 33.15
SRT 8KHz 10.60 9.29 11.47

Table 5: Breakdown results of SRT based on speaker’s gen
der in SA system, with 4 male and 6 female speakers

4. SUMMARY

In this paper, we study the issue of different sampling frequen-
cies in speech recognition. Severe performance degradation is
observed when a sampling frequency mismatch occurs. We pro-
pose a novel approach, SRT, to reduce adverse impact of mis-
match. A significant advantage of SRT is that new systems are
obtained without using any calibration data processed at the tar-

get frequency, Though we derive SRT from a system using
dynamic cepstral features with CMN and AGC-max, this trans-
formation can be easily extended to other cepstral-based sys-
tems.

In our study, SRT achieves a WER of 18.17% for 11KHz SI sys-
tem and 9.7% for 11KHz SA system, comparable to 16.17% for
11KHz SI system and 9.33% for 11KHz SA system. In compari-
son, MLLR achieves a WER of 17.92% with the use of 4.5 hours
of adaptation data. In narrow band applications, SRT can reduce
the WER to 10.60% from 28.93% given a 16KHz SA system to
be used with 8KHz test data. A benchmark 8KHz system
achieves 10.83% for the same data.
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