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ABSTRACT

Since the number of vocabulary words is often very
large in both general-task keyword spotting and unlim-
ited-vocabulary continuous-speech recognition, we choose
to represent, unlike other teams, vocabulary words and
out-vocabulary words with the same set of subword
HMMs. Secondly we replace the classical one-phoneme
transcription of fillers in the lexicon by a new, more power-
ful one-syllable transcription. Two different architectures
are studied for the two kinds of application and their re-
sults are compared to our multiple phonemic fillers. As
for the language model, the problem produced, in the case
of unlimited-vocabulary continuous-speech recognition, by
the lack of information on new words in the training cor-
pus is solved through the use of the limited information
we gathered on new words. The results obtained in both
applications demonstrate the efficiency of the choice of
a one-syllable transcription rather than a one-phoneme
one. As for the results in unlimited-vocabulary contin-
uous-speech recognition, the language model using infor-
mation from words of frequency one is demonstrated to be
a new promising method of determination of a language
model for new words.

1. INTRODUCTION

In spontaneous speech processing unknown word detec-
tion has long been considered independently and differ-
ently from keyword spotting. However since the number
of vocabulary words is very large in most keyword spot-
ting applications (number of airports, number of names
in a directory, etc.), the only differences between the two
fields are, first, the kind of words to be detected, keywords
in one case, and unknown words and/or vocabulary words
in the other, and, secondly, the availibility or not of those
words in the training corpus.

Because most known large-vocabulary continuous
speech recognizers (SRI, LIMSI, Philips, HTK, Carnegie
Mellon University, INRS,...) follow a classical architecture
based on the use of subword HMMs as acoustic models, a
lexical tree and a language model, we performed the de-
sign of our systems on the INRS speech recognizer [7, §].
Thus, since the number of vocabulary words is often very
large in both applications, we choose to represent, unlike
other teams [12, 11, 5, 1, 2, 6], vocabulary words and out-
of-vocabulary words with the same set of subword HMMs,

and discriminate between them mostly at the lexical and
language levels. Secondly, we replace the classical one-
phoneme-transcription [12, 1] of fillers in the lexicon by
a new, more powerful one-gyllable-transcription, relying
on the strong lexical constraints the syllable imposes on
phoneme strings and on its importance in speech. Two dif-
ferent architectures are proposed for the two kinds of appli-
cation and their results are compared to multiple phonemic
fillers [10].

As for the language model, the lack of information on
unknown words in the training corpus imposes the use of
a different process than the one used for keyword spotting
where a number of representatives of keywords as well as
out-of-vocabulary words are both available in this corpus.
Therefore we designed the unknown-word related language
model by using the limited information we gathered on
unknown words.

2. DESIGN OF THE SYSTEMS

Our two systems, the keyword spotter as well as the
continuous-speech recognizer with unknown-word detec-
tor, are constructed using the INRS real-time very-large-
vocabulary continuous-speech recognizer [7, 8] because it is
designed with a global classical architecture that resembles
most known large-vocabulary continuous-speech recogniz-
ers. It uses context-dependent phoneme HMMs as acoustic
models and language models based on N-gram statistics.

2.1. Filler architecture

The superiority of fillers defined at the lexical and
language-model levels only has been clearly demonstrated
in the case of keyword spotting [9] when compared to the
classical acoustic filler designs, where out-of-vocabulary-
word related acoustic models and keyword-related acous-
tic models are different. This result applies to new-word
detection too because of the high coverage of context-
dependent phonemes by the large number of vocabulary
words. We thus perform the discrimination between vo-
cabulary words and out-of-vocabulary words at the lexical
and language model levels only (see the lexicon general
format in table 1).

We compare here the performances of two kinds of syl-
labic fillers to the classical phonemic fillers [10] noted
“multiple phonemic fillers” or “phonemic fillers with a



keyword 1  phon. transc. 1 phon. transc. ¢;
keyword p phon. transc. 1 phon. transc. ¢,
filler 1 phon. transc. 1 phon. transc. ¢1
filler phon. transc. 1 phon. transc. g4

Table 1: Lexicon general format. p is the keyword num-
ber while q is the filler number.

unique transcription” (PFUT) refering to the fact that
each filler has only one phonetic transcription represented
by a unique phoneme. The 40 English phonemes we used
are thus divided among 40 fillers, one for each filler.

The syllabic fillers have each of their phonetic transcrip-
tions constituted by a unique syllable. A strong lexical
constraint is thus imposed on phoneme strings whereas for
“phonemic fillers with a unique transcription” phoneme
strings are following a statistical constraint given by the
language model.

The first kind of syllabic fillers (“syllabic fillers with a
unique transcription” or SFUT) consists of the division
of all gyllables among fillers, one syllable for each filler.
This allows a better representation of out-of-vocabulary
words occuring in the training corpus through quite accu-
rate unigram and bigram frequencies of those fillers. The
second kind (“syllabic fillers with multiple transcriptions”
or SFMT) divides all syllables between fillers according
to their frequencies in the database: each filler gathers
as phonetic transcriptions only syllables occuring with the
same frequency. This way, part of the language model is
already taken in account in the lexicon. This is useful
for unknown word detection because of the unavaibility of
out-of-vocabulary words in the training corpus.

2.2. Language Models

In a keyword spotting task we use unigram and bi-
gram frequencies computed on the whole training corpus.
Filler frequencies are computed from occurrences of out-of-
vocabulary words while keyword frequencies are obtained
from keyword occurrences in the same corpus. However, in
unknown-word detection, out-of-vocabulary words are ab-
sent from the training corpus. Nevertheless, we can gather
a few cues on unknown words [3, 4]. Our language models
are based on simpler ones.

We first defined a simple language model (LM1) by com-
puting the frequencies related to vocabulary words on the
whole training corpus, while the ones corresponding to
fillers are obtained from a transformation of this corpus
where all words are converted to fillers. Thus, here, the fre-
quencies of vocabulary-related subunits are supposed sim-
ply identical to those of new-word-related subunits. Thus
subword (phonemic or syllabic) partition is considered as
being the same for vocabulary words as well as out-of-

vocabulary words even if, in reality, the last ones have of-
ten a different structure than frequent words (new names,
new roots, etc). However this method allows a good cover-
age of classes of out-of-vocabulary words derived from (or
with the same roots as) vocabulary words.

In the second kind of language model (LM2) we keep for
filler representation only unigram frequencies drawn from
LM1. No bigram frequencies are defined for fillers. The
ones found in LM1 are much more specific to vocabulary-
word composition.

Finally, because words of frequency equal to one in the
training corpus can be viewed as having been potential new
words in a previous step, we can consider them suitable
to represent more accurately the behaviour of new words.
Thus, in this third language model (LM3), the frequencies
corresponding to fillers are computed on a modified train-
ing set where those low-frequency words are replaced by
fillers.

3. EXPERIMENTAL SETTING

3.1. Syllabic Fillers

As no list of syllables was available, we created ours by
gathering all syllables present in the transcription of our
complete database vocabulary. The 10536 syllables gath-
ered are divided between 165 syllabic fillers with multiple
transcriptions.

3.2. Vocabularies

The tests reported in this paper concern Wall Street
Journal (noted here WSJ), already described in [9]. All
the experiments reported here were using vocabularies ex-
tracted from the Wall Street Journal.

Asg no specific task is targeted here for keyword spotting,
and in order to retain for our results as much generality
as possible, we define six different vocabularies, the size of
which range from 10 to 99 words of variable frequencies
in the training corpus, and of variable sizes, more or less
confusable, to perform our experiments on:

e DIGI includes the ten digits. Their frequencies in the
training set range from 8 (word “zero”) to 154 (word
“one”) with an average of 90. The total number of
their occurrences in the test set is 128. Most of those
words have a one-syllable length and two of them
(“two” and “four”) have very frequent homonyms
(“600”, “t0” and “for”) in out-of-vocabulary speech.
The minimum number of occurrences of these words
is lower than for all the five other vocabularies. This
vocabulary is the smallest one and the most difficult
to detect among the ones studied here.

e NBRE includes all the 51 ordinal and cardinal num-
bers available in the database; their frequencies vary
from 1 to 154. They occur 299 times in the test set.
This vocabulary includes all words of DIGI.

e ONBR is the subset of NBRE containing 32 ordinal



| Name | SFMT | fa | PFUT | fa | SFUT | fa |
DIGI 77.3 1.93 | 83 4.2 | 91.5 3.8
NBRE 86.63 .76 89.3 2.6 | 92.3 14
ONBR | 88.04 1.03 | 904 4.6 | 95.8 2.1
FWOR | 83.19 91 94 29 | 95.7 1.5
VFWO | 86.61 1.92 | 94.2 44 | 96.1 2.8
VEW+ | 82.47 .58 92.1 58 | 94.3 .74

Table 2: Results for keyword spotting for less than 10

fa/h/kw.

numbers. They are found 284 times in the test set.
Cardinal numbers are among the closest derived forms
(i.e., words accepting keywords as subwords: genetive
forms, plurals, etc.) of the ordinal numbers.

e FWOR contains 99 words of frequency greater than
10. They are present 345 times in the test set.

e VFWO is a list of 23 very frequent (more than 30
times) words that occur 239 times in the test set.

e VFW+ is an extension of VFWO where the derived
forms of its keywords are added. The 56 words have
frequencies ranging from 1 to 191 (word “dollars”)
and are present a total of 234 times in the test set.

As for unknown-word detection, tests use the whole vo-
cabulary from which 218 words (vocabulary WSJ1) not
appearing in the training corpus and the frequencies of
which equal one in the test corpus are removed and then
considered as new words.

4. EXPERIMENTS

The INRS recognizer has been simplified to fit with the
available memory when used with all the proposed fillers;
thus the recognition rate of the simplified recognizer used is
low (76% for WSJ) and will obviously affect the detection
rate.

4.1. Keyword Spotting

The results of the experiments performed on keyword
spotting are shown in tables 2 and 3: The detection rate
is given in % for a false alarm rate in fa/h/kw. In fact,
the detection scores of our keyword spotter are not pro-
portional to the false-alarm rate. The range of false-alarm
rate is different for each kind of filler and each vocabulary.
Thus detection rates in these tables are given for the best
corresponding false-alarm rates. In table 3 “scorel” is the
average score on all vocabularies but DIGI.

These results show that SFUT performs very well with
all kinds of vocabularies, even with DIGI. They outper-
form the two other studied types of fillers. Using sylla-
bles (bigger subunits) leads to a decreased false alarm rate
while using independent (unique) phonetic transcriptions
increases the detection rate because the language model is
more accurate.

On the other hand DIGI has led, because of the char-
acteristics specified above, to the lowest detection rates

| [ SFMT | PFUT | SFUT |

score (%) | 84 90.5 94.3
scorel (%) | 85.4 92 94.8

Table 3: Average results for keyword spotting.

for all three kinds of fillers, however the differences with
other vocabulary scores is less important for SFUT. The
improvement given by a highest frequency of keywords is
clear for FWOR and VFWO. As for the occurrence of de-
rived words in the vocabulary, it generally decreases the in-
sertion number while increasing the sustitution rate; there-
fore its effect on detection rates and false alarm rates is not
constant.

4.2. New-Word Detection

‘We note here a difference between total detection on one
hand, when a correct occurrence of a new word is found
together with its correct frontiers, and on the other hand
partial detection, when the occurrence is correctly detected
but with a partial frontier only.

Thus, when parts of the new word are already present in
the vocabulary, for instance when new words are derived
forms of some vocabulary words, the partial detection will
give enough information. However, in that case, phonetic
transcription is harder to get than in total detection.

We thus define the total detection rate, TD, as the ratio
in % between the number of total detections and the num-
ber of new words in the file. D, the partial detection rate,
is the ratio in % between the number of partial detections
and the number of new words in the file.

The false-alarm rate, FA, is defined here as being the
ratio in % between the number of false alarms in the file
and the number of vocabulary words in the same file.

The phonetic transcription rate, PT is evaluated here
by the ratio in % between the number of phonemes de-
tected correctly and the total number of phonemes in the
chosen phonetic transcription. Moreover, we provide here
the detection rate of vocabulary words, Det, as well as
their recognition rate, Rec.

Results of the experiments are reported in tables 4, 5 and
6. The highest values are enhanced in bold face. Since our
goal is to achieve a continuous-speech recognizer which,
in a single pass, takes account of unknown words and in-
cludes their phonetic transcription to the dictionary, the
protocol followed by the comparison of the results will con-
sider first the best Det and Rec. Then we look for the best
compromise between D and FA before considering TD and
D.

We can see on tables 4, 5 and 6 that, differently from
the results obtained for keyword spotting, the best per-
formances are obtained with SEFMT: it still highlights the
importance of the syllable while showing that, this time,
because of the lack of information on unknown words, a
partially accurate language model (syllables divided ac-



| | Det [Rec | D [ TD | PT | FA ]
LM1 72 67 83 35 60 31
LM2 66 61 85 42 65 37
LM3 74 63 88 35 60 28

Table 4: Test results for PFUT in unknown-word detec-
tion.

| | Det [Rec | D [ TD | PT | FA ]
LM1 50 48 90 90 71 29
LM2 70 65 90 70 70 11
LM3 66 64 90 83 70 9

Table 5: Test results for SFMT in unknown-word detec-
tion.

cording to their frequency in the language) performs better
than one more detailed (individual syllables).

The best compromise is obtained for SFMT used with
LM2 or LM3 with quite satisfying values, followed by the
combination of PFUT with LM3, or when SFUT is used
with LM3. LM3 seems then to bring noticeable improve-
ment with all fillers. The information brought by vocab-
uwlary words with frequency equal to one in the training
corpus is shown to characterize efficiently unknown words
in terms of language modeling.

Finally we notice that the detection rates obtained with
SFMT combined with LM3 are higher than the ones re-
ported by other designers [1], [2], [6]. Moreover pho-
netic transcription given by the same combination is rather
good.

5. CONCLUSION

This paper studies three different architectures of fillers
for the two major applications of spontaneous-speech pro-
cessing: general-task keyword spotting and unlimited-
vocabulary continuous-speech recognition. Then, in the
case of unlimited-vocabulary continuous-speech recogni-
tion, because of the lack of information on unknown words
in the training corpus, we define three different methods to
evaluate the unknown-word related statistics used by the
language model with the help of the limited information
we gathered on unknown words.

The results obtained in both applications demonstrate
the efficiency of the choice of a one-syllable transcription
rather than a one-phoneme one. The syllabic fillers with
a unique transcription outperform all the other types. As
for the results in unlimited-vocabulary continuous-speech
recognition, the best performances are reached with the
syllabic fillers with multiple transcriptions used with LM3,
followed by those with LM2. The best system obtained
with LM3 detects new words with an accuracy of 90%,
their phonetic transcription with an 83% rate and only
a 9% false alarm rate, while keeping a relevant recogni-
tion rate. LM3 is thus demonstrated to be a new promis-
ing method of determination of a language model for new
words.

| | Det [Rec [ D | TD | PT [ FA |
LM1 51 50 83 56 72 38
LM2 70 67 80 60 69 27
LM3 78 66 75 35 75 14

Table 6: Test results for SFUT in unknown-word detec-
tion.
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