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ABSTRACT

In this paper we describe two new confidence measures for esti-
mating the reliability of speech-to-text output: Likelihood Depen-
dence and Neighborhood Dependence. Each word in the speech-
to-text output for a given utterance is annotated with these two
measures. Likelihood dependence for a given word occurrence
indicates how critical that word is to the overall utterance like-
lihood; i.e., how much worse is the likelihood of the next best
utterance if that word is eliminated from the recognition. Neigh-
borhood dependence measures how stable a given word is when
neighboring words are changed in the recognition. We show that
correct and incorrect words in the recognition behave significantly
differently with respect to these measures. We also show that on
the broadcast news task they perform better than some of the
existing, commonly used confidence measures.

1. Introduction

Detecting regions of high and low reliability or con fidence in
the output of an automatic speech recognizer is an important task.
Many practical applications of speech recognition systems can
benefit from such information. For example, if a certain recogni-
tion result is deemed to be unreliable, the application may prompt
the user for clarification. Thus, the availability of confidence infor-
mation can add to the sophistication of speech-based applications.

Confidence annotation can be done in principle at various levels:
e.g., sentence, phrase, word, or phone level. In this paper, as with
most current implementations, we are concerned with confidence
annotation at the word level. That is, each word output by the
speech recognizer is annotated with a confidence value.

A perfect confidence annotator would assign a reliability of 100%
to correctly recognized words, and 0% to incorrect ones. In prac-
tice, no such thing exists, of course. Instead, typical confidence
annotators assign any value between 0 and 100%. The quality of a
confidence annotator can be evaluated by seeing how close it per-
forms to the perfect annotator. (Chase’s Ph.D. thesis [1] addresses
this question in depth.) Another desirable property of a confi-
dence estimator is that it should be computationally inexpensive;
for example, it should allow real-time recognition performance.

Several confidence measures have been proposed in the past
[1, 2, 4, 7]. Two of the more successful ones are: N-best List
Homogeneity (NBH) and Language Model Jitter (LMJ) [1, 3].
NBH is the fraction of an N-Best list containing a given word
within a given time segment. The closer this fraction to 1, the
more reliable is the word. LLMJ is the fraction of times a given
word remains present in the recognition hypothesis under varying

language-model parameters, such as the language weight'. Again,
the higher this fraction, the more likely it is correct.

In this paper, we introduce two new features for confidence anno-
tation. The firstis Likelihood Dependence (D). The LD value for
a given word instance indicates how much the overall hypothesis
likelihood depends on that instance. It is obtained by comparing
the original utterance likelihood to that of the next best recognition
hypothesis that is constrained to exclude that word instance.

The second feature is Neighborhood Dependence. It defines how
stable a given word instance is, even when other words in the
recognition are forced to be different. Briefly, for each word
instance in the main recognition hypothesis, another hypothesis is
obtained that is forced to exclude that word instance. This may
cause other nearby words to be changed as well. The stability
of a word instance, in spite of neighboring ones being excluded,
indicates its correctness.

Confidence measures can also be applied jointly. Chase [1]
used a decision tree procedure to combine an arbitrary number
of them. We have used a straightforward generalization of the
one-dimensional case to combine the two proposed features.

We first describe the two features in greater detail in Section 2.
We then describe their use in actual confidence annotation of a
broadcast news test set in Sections 3 and 4. These include mea-
surements of how accurately the features can be used to identify
correct and incorrect recognitions, as well comparisons with the
other measures NBH and LMJ. Section 5 concludes this paper.

2. The Proposed Features
2.1. Likelihood Dependence (L.D)

For each word instance in the recognition hypothesis, we wish to
estimate its contribution to the total hypothesis likelihood. We
get this information as follows: For a given word instance in the
original recognition, we obtain the next best recognition in which
that instance does not appear, and compare the likelihoods of the
two.

Let P be the log-likelihood of the original hypothesis consisting
of n word instances w1,w2,ws,...,wr. (The same actual word may
appear as more than one instance, of course.) Let us denote the
time segmentation of the ¢-th word instance w; to be (s;, €;); i.e.,
start time s; and end time e;, obtained as part of the recognition
process. For each w;, we prevent it from occurring anywhere
around the time segment (s;, €;), and obtain a new recognition.

! An exponent applied to the language model probability in obtaining
the overall likelihood for a recognition hypothesis.



Let P; be the log-likelihood of this hypothesis. The log-likelihood
difference P — P; is ameasure of the relevance of w; to the original
recognition hypothesis. The larger this difference, the more likely
that w; is a correctly recognized word. (We will henceforth simply
say “likelihood” to mean “log-likelihood”.)

A number of questions arise. First, how do we obtain a recogni-
tion hypothesis that does not contain a given word instance. (Let
us refer to such hypotheses as constrained hypotheses.) Second,
in obtaining P;, it is not sufficient to prohibit w; from occur-
ring exactly within (s;, €;), since time segmentations are never
known perfectly. Finally, raw likelihood difference values cannot
be directly used as confidence measures, for obvious reasons. We
must derive a usable confidence measure, or probability of cor-
rectness, from the raw likelihood differences. We discuss these
issues below.

Generating Constrained Hypotheses. We first provide some
background on the CMU Sphinx-3 recognizer [6] that was used for
this research. We use two passesto get the initial recognition. The
first pass is a conventional beam search using the Viterbi algorithm.
It produces a word lattice that includes word segmentations and
acoustic likelihoods. The second pass is an A* search through
a word graph constructed from the word lattice. The top of the
N-best list from this search is the final recognition hypothesis.

To generate a constrained hypothesis, we repeat the second (A*)
pass over a suitably modified word lattice. Specifically, for a given
word instance w; with time segmentation (s;, ;) in the original
hypothesis, we create a modified word lattice from the original that
excludes w; as well as other nearby segmentations of the word.
The “slop” at segment boundaries are determined empirically. In
our case, if the same word occurs within 1 frame (10msec) of s;
or within 4 frames of e;, we eliminate it from the word lattice. We
use a larger slop for the end time since the word lattice produced
by the Viterbi search has greater uncertainty in its word end times.

Occasionally, removing a word w; splits the lattice into two un-
connected parts. In this case, no recognition result is available.
We call them critical word instances. The raw likelihood dif-
ference for them is essentially infinity, and they are very likely
to be correct recognitions. Second, since our A* search contains
pruning and is not an optimal search, the likelihood difference
P — P; may be negative. In this case, the word instance is likely
to be incorrect.

Deriving the LD Confidence Measure. As mentioned earlier,
given a word instance w; and its raw likelihood difference P — P;,
we ultimately need to derive a probability that w; is correct. Such
a mapping function is obtained through a straightforward training
process, described below.

The training data is a set of utterances for which words in the
recognition hypotheses have been labeled according to their ac-
tual class: correct or incorrect. For each utterance hypothesis in
the training set, likelihood difference values are computed for its
constituent word instances, as described above. The entire range
of these values is divided into discrete bins and the fraction of
correct words in each bin determined. This is the desired LD
confidence measure.

We ran this training process on data consisting of about 14000
word instances from the broadcast news (BN) recognition task
[6]. (The word error rate on this test set was about 27%.) Figure 1

shows the distribution of raw likelihood difference values for the
two classes of correct and incorrect word instances. There is a
clear distinction in the behavior of the two classes.
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Figure 1: Distribution of raw likelihood difference values for
correct and incorrect word classes.

Figure 2 shows the probability that a word instance is correct (i.e.,
its LD confidence score), given its likelihood difference. We see a
clear correlation between the two, especially in the region where
most of the data is concentrated. Note that in regions of sparse
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Figure 2: Probability of a word instance being correct, based on
its likelihood difference.

training data, the curve is quite uneven, as shown by the occasional
spikes. The unevenness should be smoothed using neighboring
bins to provide a more reliable curve.

We should also note that the two figures exclude critical words
that split a lattice when removed. There were about 1000 such
words in the training set, of which 98.8% were correct.

2.2. Neighborhood Dependence (ND)

Neighborhood dependence represents the number of neighbors
that can affect a word instance in the recognition hypothesis. Once
again, let the original utterance consist n word instances w1, w2,
W3,....Wn. As with LD, we generate n constrained recognitions
forcing one of the word instances to be excluded at a time. Con-
sider two word instances w; and w; in the original recognition



hypothesis. When a constrained recognition is produced by ex-
cluding w;, instance w; may or may not be present in it. (To
determine its presence we look for w; around its original segmen-
tation, using boundary tolerances as described earlier.) We count
the number of times wj is absent in the n constrained recogni-
tions. This is the raw Neighborhood Dependence Count. The
larger this count, the more likely that w; is an incorrect word. (It
is important to count the number of times w; is absent, rather
than present. The reason is that whenever the excluded word
w; 1s far removed from the subject wj, the latter usually remains
unchanged, whether it is correct or not.)

The details of obtaining constrained recognitions are identical to
the case of the LD measure (Section 2.1). Conversion of the
raw neighborhood dependence count to an ND confidence score
is similar: Given all the word instances in the training set with
a specific raw count, we compute the fraction of them that are
correct.
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Figure 3: Distribution of neighborhood dependence counts for
correct and incorrect word classes.

Figure 3 shows the distribution of the neighborhood dependence
counts for the classes of correct and incorrect word instances.
As with the LD measure, there is a noticeable though smaller
difference between the behavior of the two classes.
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Figure 4: Probability of a word instance being correct, based on
its neighborhood dependence count.

Figure 4 shows the probability of correctness derived from the ND
count. As with LD, there is a marked correlation between the two.

There is also a similar unevenness in regions of sparse training
data that needs to be overcome using smoothing.

2.3. Joint Measures

It is straightforward to combine the two measures (or any two,
for that matter) to obtain a joint one. We create a 2-dimensional
array of bins, covering the space of the two measures, and count
the fraction of words correct in each bin. However, one has to be
much more aware of the possible sparseness of the training data.
The number and granularity of bins must be chosenaccordingly. It
is also much more critical to smooth the distributions so obtained,
to avoid over-fitting to the training data.

2.4. Algorithmic Complexity

The process described above for obtaining the confidence mea-
sures appears to be computationally expensive. For an utterance
with n word instances, n new (constrained) recognitions have to
be obtained. In practice, this overhead need not be inordinately
high. The solution we propose for our real-time experiments is
to use the global best path search [5] pass of the Sphinx-3 or
Sphinx-II decoders. This algorithm finds the globally optimum
path through a word lattice such as the one described in Section
2.1. It is an efficient algorithm that usually runs about 10-20 times
faster than real time on large vocabulary tasks on modern comput-
ers. Therefore, for short utterances where n is about 10 words, the
additional computation is likely to be within a real time. For the
longer sentences in the BN task, we have seen that the computation
required was about 2 times real time.

3. Experiments

‘We have just shown that the LD and ND statistics are significantly
different for the classes of correct and incorrect words. We also
evaluated the two features by using them for tagging the recogni-
tion on a separate test set as correct or incorrect. In addition, we
compared their performance to similar tests using the N-best List
Homogeneity (NBH) and Language Model Jitter (LMJ) features
[1]. We briefly outline the latter two below.

Like LD and ND, NBH is computed for each word instance w;
in the original recognition hypothesis. Basically, one searches for
instances of w; near its original segmentation in the N-best list.
The ratio of matches found to the size of the N-best list is the
NBH measure. (The original implementation computed the ratio
by weighting each N-best entry by its total likelihood. We have
not done so in our experiments.)

LM]J is computed as the fraction of times a word instance re-
mains present in the recognition hypothesis under varying lan-
guage weight and word insertion penalties. (In our experience,
word insertion penalty has played a minor part; we have not var-
ied this parameter.) We trained NBH and LMJ on the same data
as LD and ND.

The experiments performed involved using the confidence mea-
sures fo tag recognition on a test set as correct or incorrect. The
test set included about 6000 words from the Broadcast News do-
main. Briefly, each word in the recognition was annotated with a
confidence score; i.e., probability of being correct as determined
by the training set statistics. (Actually, each word had four dif-
ferent annotations for the four measures.) A word was tagged as
being correct if its confidence score exceeded a chosen threshold.



The performance of each measure was evaluated by repeating the
tagging at several different thresholds.

Based on the tagging, we computed the following two figures for
the four confidence measures:

1. Contamination Rate: the ratio of the number of incorrect
words tagged as correct to the total number of words tagged
as correct.

2. False Alarm Rate: the ratio of the number of correct words
tagged as incorrect to the total number of words tagged as
incorrect.

An ideal tagger would have a contamination rate and false alarm
rate of zero. The confidence measures can be evaluated by how
close they get to the ideal tagger.

4. Results

Figures 5 and 6 show the contamination and false alarm rates for
the four confidence measures, at different levels of tagging. As the
threshold is varied, the fraction of words tagged as correct changes.
From Figure 5 we can see that as the fraction of words tagged as
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Figure 5: Contamination rate vs the fraction of words tagged as
incorrect, for each confidence measure.

incorrect becomes greater, LD performs the best. That is, the
remaining words that are tagged as correct are less contaminated
with actually incorrect words.

From Figure 6 we see that as the threshold is set to tag incorrect
words more aggressively, LD agains performs best; it has the
lowest false alarm rate. At somewhat lower rates of tagging, ND
seems to be the best. Overall, LD or ND dominates over a wide
range of the graph.

A second problem with both NBH and LMJ is that they can be
evaluated for only a portion of the entire graph. The reason is that
a large fraction of the data, whether correct or incorrect, falls in
exactly one point. This is especially true of LMJ; for over 60%
of the words, the LMJ score is 1; their recognition is unaffected
as the language weight is changed. Thus, discrimination between
correct and incorrect words is impossible for that fraction of data.
This problem is less severe for ND, and not at all for LD.

‘We have also used LD and ND jointly, as described in Section 2.3.
The main benefit we have observed in this case is that the joint
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Figure 6: False alarm rate vs the fraction of words tagged as
incorrect, for each confidence measure.

measure achieves the better performance of LD at the higher end
of the graphs, and that of ND at the lower end.

5. Conclusion

We have introduced Likelihood Dependence and Neighborhood
Dependence as two new features for use in confidence annotation.
We have seen that together the two outperform other established
measures over a wide range of operation. LD, in particular, seems
to be significantly better than any of the others individually. We
are also evaluating the application of these features in other areas,
including confidence annotation for a medium-vocabulary, real-
time system interactive system, and in improving the word error
rate of speech recognition based on the additional confidence in-
formation.
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