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ABSTRACT

A fast algorithm for left-to-right HMM decoding is pro-
posed in this paper. The algorithm is developed based on a
sequential detection scheme which is asymptotically optimal
in the sense of detecting a possible change in distribution as
reliably and quickly as possible. The scheme is extended
to HMM decoding in determining the state segmentations
for likelihood or other score computations. As a sequential
scheme, it can determine a state boundary in a few time
steps after it occurs. The examples in this paper show that
the proposed algorithm is 5 to 9 times faster than the Viterbi
algorithm while it still can provide the same or similar de-
coding results. The proposed algorithm can be applied to
speaker recognition, audio segmentation, voice/silence de-
tection, and many other applications, where an assumption
of the algorithm is usually satisfied.

1. INTRODUCTION

Hidden Markov Model (HMM) has been widely used in
speaker and speech recognitions. In order to determine
HMM state segmentations or compute likelihood scores, a
decoding algorithm is needed. The algorithm is important
since it takes the majority of the computation in applications.
A fast decoding algorithm not only means fast response for
recognition but also provides a better performance when
computational resource and time are limited. For example,
in speaker verification, a fast decoding algorithm means fast
response, and more users and channels can be supported
given the same, limited hardware.

The Viterbi algorithm is the prevalent HMM decoding
algorithm. The concept of the Viterbi algorithm was from
graph and network theory, and the HMM decoding problem
was solved as the shortest-route problem, which has been
well studied, such as Dijkstra’s algorithm [1] and many oth-
ers [2]. The Viterbi algorithm [3] provides an optimum
solution to the problem of determining the state segmenta-
tion of an HMM in the sense of maximum likelihood [3, 4].

Asis well known, HMM is a parametric statistical model
with a set of states which characterize the evolution of a
non-stationary process in speech through a set of short time
stationary events. Within each state, the distribution of the
stochastic process is usually modeled by Gaussian mixtures,
and the distribution changes from state to state sequentially
in a left-to-right HMM. Following the definition of HMM,
given a sequence of observations, we can determine the
state segmentations by detecting the changes in distribution
sequentially. In this paper, we propose an algorithm based on
a sequential detection scheme which has an asymptotically
optimum property.

Wald [5] introduced the concept of sequential test and
formulated sequential probabilityratio test (SPRT). The test
was designed to decide between two simple hypotheses se-
quentially. Given two constants as the upper and the lower
stopping thresholds and the density functions, p; and p; of
two hypotheses, H; and H,, respectively, by observing the
data and computing the accumulated log likelihood ratio se-
quentially, SPRT can make a decision on either continuing
the observation or stopping the test in accepting {; or .

Using the sequential test to detect a change in distri-
butions was first proposed by Page [6, 7], for memoryless
processes. Its asymptotic properties were studied by Lorden
[8]. The general form of the test was proposed by Bansal
[9] and Bansal et al [10]. They also studied its asymptotic
properties for stationary and ergodic process under some
general regularity conditions. It has been proved that the
test is asymptotically optimum in the sense that it requires
the minimum expected sample size for decision, subject to
a false alarm constraint [8, 10, 11].

The Page algorithm needs a pre-determined threshold
value for decision. It may not be so critical if only the
changes between two density functions needs to be de-
termined, but, for HMM decoding, we have to detect the
changes between many different density functions and the
threshold values are usually not available. To solve the prob-
lem, we proposed an algorithm which can make the decision
based on a common threshold value with a time constraint



for different state pairs, instead of using multiple thresholds.

The proposed algorithm is much faster and can provide
the same or similar results as the Viterbi algorithm for the
examples tested in the paper. It is especially useful for
real-time speaker recognition including speaker verification
and identification [12, 13, 14], where the duration of each
state is longer enough to meet an assumption of the proposed
algorithm. The sequential algorithm is also useful to parallel
processing, where state level scores, e.g. likelihood or others
[15], can be calculated without waiting to the end of the
decoding.

2. DETECTING A CHANGE IN DISTRIBUTION

Let o,, denote an observation vector at time n, and p(oy,)
and p»(o,,) be the density functions of well known, distinct,
discrete, and mutually independent stochastic processes. In
the case of HMM decoding, they are the density functions of
two connected states, e.g. state 1 and state 2 respectively, and
the observed vector sequence is initialy generated in state 1.
Given the observation vector sequence, O = {o,;n > 1},
and the density functions p; (0, ) and p;(oy, ), the objective
is to detect a possible p; to p, change as reliably and quickly
as possible. Since the change can be happened at any time,
we need a sequential detection scheme.

To gain insight, a non-sequential detection scheme was
used in [10, 11]. Initialy, the size n of the observation
sequence O is fixed. We assume that the change occurrences
are equally probable, then the p; to p, change occurs right
after the data point o;; 1 < j < n, if and only if
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Although the above scheme can be implemented by a fast
algorithm, a sequential test procedure is still needed and it
can be presented as follows.

Given the data block {0}, decide in favor of the
change from p; to p,, iff

where

When data are observed sequentially, Page proposed an al-
gorithm [6, 7] to decide that p; to p, change has occurred at
the first n such that

:ZRi(oi)—lg}clgn{ZR } (4)

where 6 > 0 is a pre-determined threshold. A recursive
form for the above sequential test is

T(0% = 0 (5)
T(0") = max{0,T(0""}) + R,(o")}, (6)

where, p; to p; change is occured at the first n if T(0™) > 4.
As pointed by Page [6], the above test breaks up into a
repeated Wald sequential test with boundaries at (0, §) and a
zero initial score. It is asymptotically optimum in the sense
that it requires the minimum possible expected sample size
for decision, subject to a false alarm constraint. The related
theorems and proofs can be found in [8] and [10].

The previous study was interested in detecting the occur-
rence of the change. We are also need to determine the point
of the change for likelihood or other score computations.
When T'(0o™) > é, the last data point of p; is

E_arglg}clgn{ZR } (7)

In many applications, it is difficult to determine the
threshold value 6. For example, in speech recognition, we
may have over one thousand subword HMM’s and each
HMM has 3 states. Due to different speakers and different
spoken contents, it is almost impossible to pre-determine
all of the threshold values for every possible combination
of connected states or every possible speaker. To apply
the sequential scheme in speech applications, we propose a
detection scheme as follows, which does not need to pre-
determine the threshold value, é, precisely.

Select a time threshold ts > 0. Observe data sequen-
tially, and decide that the p, to py change occurs, if

n_gztéa (8)
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where € > 0 is a small number or can be just zero as we
used in the examples in this paper, R;(0') is defined as in
Eq. (3). The last point { of p1 can be calculated using Eq.
(7). Here, we assume that the duration of p; is not less than
ts.

An illustration of the proposed scheme is shown in Fig.
1 (a), where t; in Eq. (8) is a time threshold representing a



time duration, and ¢ in Eq. (4) represents a threshold value
of the accumulated log likelihood ratio. It is much easier
to determine ¢s than 6 in speech and speaker recognition,
and a common ts can be applied to different HMM’s and
different states. Generally speaking, a larger {5 can give a
more reliable change point, but it may delay the decision
and cost more in computation. Also, 5 should be equal to
or less than the duration of p,. The examples in this paper
show that the proposed scheme can obtain exactly the same
state segmentations as the Viterbi algorithm when ¢5; > 2.
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Figure 1: The scheme of the proposed decoding algorithm:
(a) the end point detection for state 1, {5; (b) the end point
detection for state 2, 79; and (c) the grid points for p;, p, and
p3 computations (dots).

3. THE PROPOSED ALGORITHM FOR HMM
DECODING

We have introduced the scheme of detecting the change
between two stochastic processes. In this session, we apply
the proposed scheme to HMM decoding. We focus our
discussion on the left-to-right HMM since it is the most
popular HMM structure in speech and speaker recognition
[16].

For a left-to-right HMM, multiple state segmentations
can be realized by repeating the above procedure, i.e., to
determine the changes of density functions from p; of state
1 to p, of state 2, from p; to p3, and so on, sequentially. We
use Fig. 1 to illustrate the concept. Fig. 1 (a) shows the
scheme to determine the end point of state 1. The circles
are the accumulated ratio values. Given 5, Eq. (8) and Eq.

(9) are evaluated at each step sequentially. At{ = 7, we
have t; —t5s > t; = 2 and T'(0’) > ¢ > 0. Thus, the end
point of state 1 is ¢s. As shown in Fig. 1 (c), so far, only
p1 and p, are involved in the computation, where each dot
represents one probability computation. The test continues
from ¢ = ¢ for state 2 as shown in Fig. 1(b). Following the
same procedure as above, the determined end point for state
2 is t9. It involves the computation from ¢¢ to ¢1; for p, and
p3 as shown in Fig. 1 (c).

‘We note that the proposed decoding scheme is based on
the assumption that the duration of the next state (the number
of frames in the next state) is no less than ¢{5. Many appli-
cations, such as speaker verification, speaker identification,
audio segmentation, etc., can normally meet this assump-
tion. When the assumption can not be satisfied as in some
speech recognition examples, further evaluation on the next
states is necessary. It will be discussed separately.

For the proposed algorithm, the number of additions in
HMM decoding is in the order of

2[T+ (N = ts] (C+2)m2C [T+ (N — 1)tg] ,

(10)
where C' is the number of float point operations at each grid
point for log probability, C' + 2 includes the accumulation
and the ratio computations, /V is the total number of states,
T is the total number of frames, and ¢4 is the time thresh-
old. A widely used implementation of a full-search Viterbi
algorithm for the left-to-right model needs

NT(C+ 1)+ T ~ NTC (11)

additions. Therefore, the speedup of the proposed algorithm
is in the order of
NT
2[T+ (N —1)ts]”

(12)

4. EXPERIMENTS

Example 1: This is a forced decoding problem from speaker
verification [12, 13, 14]. In a training session, a speaker
dependent left-to-right HMM is trained with 14 sates and
each state has 4 Gaussian mixtures for a pass-phrase “open
sesame”. In a test session, we need to decode the given test
utterance into a sequence of states and calculate likelihood
scores. The inputis a sequence of 24 dimensional features of
cepstral and delta-cepstral coefficients derived from a 10th
order LPC analysis over a 30 ms widow updated at 10 ms
intervals. For this example, we have 100 cepstral frames
and the proposed algorithm gives the exactly same result
as the Viterbi algorithm as long as t5 > 2, where ¢ = O.
The computations in the number of floating point operations
(flops) are listed in Table 1. The proposed algorithm is about
5 times faster than the Viterbi algorithm.



Table 1: Comparisons on Computation

Viterbi Proposed Speedup
Algorithm Algorithm
Example 1 | 785.5Flops | 151.5 Flops 52
Example 2 | 29.01 Mflops | 3.05 Mflops 9.5

Example 2: This example is to verify the proposed al-
gorithm in the case of each state only has a few frames,
e.g. 2 to 10 frames in one state. Now, the given utterance,
“open sesame”, with 101 frames is decoded into 10 sub-
words (phonemes). Each of the subword HMM has 3 states.
When we do a forced decoding, we concatenate the states of
all the subwords as a sequence of 30 states. For this example,
the proposed algorithm gave the exactly same result as the
Viterbi decoding ({5 = 2 and £ = 0). The computations for
the Viterbi and the proposed algorithms are 27.93 and 2.93
Mflops respectively. Therefore, the proposed algorithm has
a speedup of 9.5 approximately, as shown in Table 1.

5. CONCLUSIONS

This paper proposed a sequential decoding algorithm based
on an asymptotically optimal detection scheme. The algo-
rithm is consistent with the definition of left-to-right HMM.
Compared to the Viterbi algorithm for HMM decoding, it
has several advantages, although it is not an optimal algo-
rithm in the sense of maximum likelihood. First, it is a
sequential algorithm. It can determine a state boundary in
a few time steps after it occurs, which is useful to real-
time speaker verification, speaker identification, language
identification, audio segmentation, silence/voice detection,
and other applications. Second, it needs less computation.
For example, it can provide faster response or support more
channels for speaker verification when the computational
resource is limited. Last, the implementation is easier.

We note that this paper presents a preliminary concept
for a different decoding approach for speech processing. It
still needs further tests before it can be applied to real-world
applications.
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