THE REWARD SERVICE CREATION ENVIRONMENT,
AN OVERVIEW

Tom Brgndsted, Bo Nygaard Bai, Jesper Dstergaard Olsen

Center for PersonKommunikation
Fredrik Bajers Vej 7A-5
Institute for Electronic Systems,
Aalborg University
DK-9220, Aalborg @, Denmark
{tb,bai,jo}@cpk.auc.dk

ABSTRACT

The present paper describes the platform for building spoken
language systems being designed and implemented within the
EU-language engineering project REWARD. The platform
collects and streamlines a set of software tools such that they
together constitute the basic modules needed to enable dialogue
developers to establish new dialogue applications with only
minimal knowledge outside their own field of experience and
within a minimum amount of time. The system differs from
other platforms, as non-expert users have been strongly
involved in the design phase.

Keywords: spoken language dialogues, non-expert design
tools, resource management, reusability, rapid prototyping,
abstraction, and extendibility.

1. INTRODUCTION

The three year EU-Language Engineering project REWARD
(“Real World Applications of Robust Dialogue” LE1-2632)
addresses the needs of organisations which do business over the
telephone (i) to automate certain telephone services using
spoken language dialogue technology and (ii) to automate the
process of creating such services. The project brings together
two technology suppliers, Vocalis Ltd. and CPK (Center for
PersonKommunikation), group
organisations consisting of: (a) The British telemarketing and

along with a of user
market research organisation Taylor Nelson AGB, (b) the Dutch
market research organisation NIPO (Nederlands Instituut voor
de Publicke Opinie en het Marktunderzoek), (c¢) the Danish
business travel agency DanTransport and (d) the Spanish
hardware maintenance company MADE (Manufacturing and
Development SA).

In the spring of 1997, the REWARD project underwent a major
revision prompted by the realisation that a simple merger of the
technology suppliers' existing tools would not achieve the
stated goals of the project in terms of both functionality and
ease of use. As a result, CPK was given the primary role of
developing a new suite of dialogue creation tools. These tools
should significantly improve the productivity of a dialogue
designer and bring down the cost of developing and deploying
spoken dialogue teleservices. During the design and implemen-
tation of the new tools, the user group should design dialogues

using existing dialogue building tools developed at Vocalis and,
in parallel, participate as advisers in the design phase of the new
platform. Thus, the platform described in this paper is the result
of design decisions largely initiated by the users (cf. [8], [9]).

2. THE PLATFORM

The REWARD platform consists of two major software
components (Figure 1): (i) The Dialogue Creation Environment
and (ii) the Runtime System. The Dialogue Creation Environ-
ment is being built entirely by CPK. The runtime system is
primarily being built by Vocalis Ltd., using natural language
technology developed at CPK.

=
§ Dialogue Developer

Source Level Dialogue Sub-grammar System

Debug Tool Flow Tool Design Tool Response Tool

S,
EH
5 E C: on
Oc o Current ||Common Current
3] S el | dial grammar
S= dlalogue lalogue | |15 e responses
22 library Y
s
(=]

)
| Dialogue description & grammars Y
|

i
_DI Dialogue Manager - NL-Parser |
!

| Speech and Telephony Interface |

Run-time
System

Figure 1: REWARD Platform architecture.

The Dialogue Creation Environment being focussed on in this
paper provides users with a number of window-based tools
(implemented in JAVA). The tools allow them to implement,
debug, and maintain dialogue systems in a dedicated dialogue
description language and to maintain reusable dialogue
resources. Tools for describing dialogue flows and defining sub
languages make up the main components of the environment.

2.1. Dialogue flow structure.

In the beginning of the project, two approaches to flow chart
based dialogue design were evaluated. The first one based on
the Generic Dialogue System (gds) described in [2] and the
second one on a dialogue building system developed at Vocalis
Ltd. As a simple merger of the best sub components of the two
systems turned out to be unrealisable, the development of an

entire new tool, DFT (Dialogue Flow Tool), based on the
gained experiences was initiated.

The DFT is the primary entry point to the Dialogue Creation
Environment. Dialogues are described and implemented in a
graphical environment using directed flow chart structures. The
DFT works with two formalisms for the representation of
dialogue descriptions:

1. A Graphical Programming Language (GPL).

2. A textual scripting Dialogue Specification Language
(DSL).

The DFT compiles GPL into the equivalent DSL for execution
by the dialogue manager of the runtime system. The largest
proportion of DSL is taken up with commands corresponding to
the states of the flow chart. Currently, round fifty commands
have been defined including the very basic ones like
recognising, answering, recording, and dialling. It is possible
for the user to use the DSL scripting language directly, but this
is not encouraged. The scripting language is primarily intended
for allowing integration of other dialogue development tools
with the DFT. The DFT can import any legal and complete sub-
dialogue written in the DSL scripting language.

The user edits the flow of control in the dialogue description by
the method of direct manipulation. The user can directly refer to
and manipulate the commands and variables in the dialogue
description trough a simple point and click interface. This is
opposed to the name binding used in the textual scripting
language where names are used to bind a transit from one node
to the label of the next command to be executed.

The flow graph consists of nodes connected by arrows. Each
node represents some action to be taken at that point in the
dialogue. The arrows specify the possible ways the different
actions can follow each other.

An extensive verification process helps to catch errors early in
implementation process. The user interface of the DFT is
intended to support the work of the dialogue designer through
the entire dialogue creation process. To aid this, the validation
process can be configured to check only certain aspects of the
dialogue design. In the early stages of the design phase, the
dialogue designer may want to merely sketch the overall flow of
the dialogue and not to be bothered with filling in the details of
the individual dialogue actions. At this stage the designer may
want to know only that the flow graph contains no dead ends or
unreachable nodes. The DFT allows editing of such incomplete
dialogue descriptions but will not attempt to compile and run
them.

A. Frames.

The dialogue flow graph is contained in a frame. A frame is
comparable to a function in C or a procedure in Pascal. A frame
can take any number of parameters and return any number of
values. In addition, a frame can hold a number of local
variables for its own internal calculations. The flow graph of a
large and complex dialogue will typically be split into a number

of frames, each corresponding to a sub-dialogue. Frames can be
nested to any depth.

It is intended that frames can be used to represent reusable sub-
dialogues.

B. Nodes.

Each node takes a number of parameters and can return a
number of values. Results are passed back to the enclosing
frame after completion of the node’s action. For each returned
value the enclosing frame can chose to ignore the value or
assign it to a variable. Additionally, each node has an associated
inspector that provides a specialised graphical interface for that
particular type of node. The inspector is used to bind variables
and values to the node’s parameters. Typical parameters may be
prompts to be played or grammars to be used for recognition
and parsing.

C. Expressions.

The GPL includes a special type of node that implements a
simple expression syntax. This means that calculations and
simple data manipulations can be implemented directly in the
dialogue description. This reduces the need to extend the
runtime system with external C-functions for many common
operations.

D. Extensions.

Although many commonly used operations can be
accomplished in the dialogue description by the use of
expressions, it is not intended to have the power of a general
purpose programming language. Complex application specific
processing must be implemented in an external programming
language like C, and added to the set of available dialogue
commands.

E. Procedures.

The procedure frames appear as nodes in the node library. The
DFT automatically builds and maintains a default inspector for
new procedure nodes. This means that a procedure node can
immediately be used in the dialogue description and that the
process of calling a procedure node is equivalent to that of
calling one of the basic nodes. Procedure nodes can also be
added to the common sub-dialogue library (see section 2.3),
which effectively makes them an extension of the dialogue
language.

2.2. Sub Language Definition.

Two approaches to sub language definition and sub grammar
design have been examined and elaborated:

e In the beginning of the project, the users evaluated a flow
chart based tool for drawing label based recursive
transition network grammars (RTNs) in a graphical
environment. The tool was a sub component of the Generic
Dialogue System described in [2] and similar to the
concept of the GrapHvite developer kit [10] with an
additional possibility of attaching “semantic actions” to
word transitions.

e Since the revision of the project (cf. section 1), a radical
different approach has been implemented based on the
initially somewhat vague idea that the Service Creation
Environment should be able to generate the necessary sub
grammars based on a few word, phrase, or sentence
examples typed in by the user.

The users rejected the first approach primarily because the flow
chart based tool was too heavy to use when dealing with simple
keyword or phrase (“concept”) spotting tasks. Further, the tool
provided no facility for resource management or reuse of
grammars.

The second approach has led to the unification based tool
described in greater detail in [5], [6], [7]. The tool presupposes
a Global User Lexicon where lexical items are coded in a
compound feature based format. The Global User Lexicon
allows expressions like {category=city, country=UK} to be
deduced from word lists like “London, Leeds” and subsequent
expansion of the word lists based on the deduced expressions:
“London, Leeds, Manchester, Liverpool etc.” (cities in the
United Kingdom).

Global User Lexicons are not necessarily “general” in a
linguistic sense. In the REWARD project, it is presupposed that
they are implemented and maintained by the users themselves
and that they reflect the class of domains relevant to the users’
organisation. It is expected that the global lexicon largely can
be generated using attributed databases like staff lists, lists of
articles or customers eftc. available in the user organisation.
Thus, the Global User Lexicon is an important resource
management facility of the Service Creation Environment (see
section 2.3).

The unification based concept described above, presupposes a
more powerful compound feature based grammar formalism
than the initially evaluated RTNs. The formalism for sub
language definition is an Augmented Phrase Structure Grammar
(APSG) format. APSGs are used both for parsing (extracting
semantics from) spoken input and, in a converted finite state
approximation format, for constraining speech recognition.
Vocabularies are phonemically transcribed using a dedicated
transcription tool. Semantics generated by the parser is
represented in nested lisp-like frame structures that are
interpreted by the dialogue manager of the run-time system. For
a more detailed description of the grammar format, parser,
converter, and semantic frames, refer to [4], [6]. The concepts
behind the phonetic transcription tool are described in [1].

As the user organisations mostly deal with very system-directed
dialogues, they will normally implement one named sub
grammar for each state associated with a “system prompt” in the
dialogue. However, more than one sub grammar can be active at
any time such that the dialogue control can branch on the name
of the sub grammar recognising and parsing input. The system
is capable of analysing grammars and deducing the possible
values for each semantic frame. The DFT uses this facility to
validate branches on semantic values returned by the natural
language parser of the Run Time System.

2.3. Reusability in Spoken Dialogues.

A spoken dialogue system can be viewed as a program. The
task of creating a program becomes much easier when the
programmer has at his disposal a suitable library of functions
that fits the application domain. Also, when he makes several
programs within the same application domain, he can often
reuse parts of earlier programs. An obvious way to speed up the
dialogue creation process would be to use suitable prefabricated
elements. Unfortunately no great store of reusable dialogue
components currently exists.

The users in the REWARD project need to use spoken
dialogues systems within the fields of telemarketing and market
research. For this to be viable, it must be possible to quickly
and cheaply create and deploy spoken dialogues systems. These
systems will typically have a limited life span but will be very
similar in nature. It must be expected that there will be a large
degree of commonality between such dialogues. This presents
an obvious case for reuse.

A spoken dialogue system is a collection of many different
types of resources like common sub grammars for parsing dates,
parsing passwords etc. Common sub grammars may be
embedded in common sub dialogues e.g. describing
clarification dialogues in the context of date prompting,
password prompting etc.

This complicates the process of collecting reusable spoken
dialogue components. The flow graph description of a sub-
dialogue has little meaning without the underlying resources on
which it depends: sub grammars, word-models and prompts. An
important function of the Service Creation Environment is
managing resources and their interdependencies to simplify the
extraction of reusable sub-dialogues.

When a sub-dialogue is found to be reusable, it should be
placed in a frame and put in the library of common sub-
dialogues. When a sub-dialogue is moved to the common sub-
dialogue library, the DFT first validates it to ensure that it is
complete, It then makes a complete dependency analysis to
locate all external resources referenced by the sub-dialogue.
Finally, the DFT makes a copy of all the resources referenced
by the sub-dialogue and attaches it to the sub-dialogue. This
effectively turns the sub-dialogue into a fully self-contained and
reusable dialogue unit.

It is the intention that user organisations over time will be able
to build their own library of customised dialogue components.

2.4. Wizards

Wizards are a programmatic representation of pieces of domain
specific knowledge. The Dialogue Creation Environment
employs wizards to encapsulate knowledge about the design
and implementation of spoken dialogue systems. By using
wizards the dialogue designer can let the Dialogue Creation
Environment take an active part in the design and
implementation of the dialogue. This can greatly speed up the
implementation of common spoken dialogue idioms and may
also help beginners to make better dialogues.

The DFT supports the use of two types of wizards:

e Task-wizards are pre-programmed actions that semi-
automates common dialogue design tasks and idioms. A
task-wizard must be activated explicitly by the dialogue
designer to aid him with a certain task. An example could
be a wizard for building the skeleton dialogue for a
standard information retrieval task. The wizard would first
ask the designer to answer a number of questions about the
dialogue e.g. should it have an opening prompt? Should it
continue in a question-answer loop allowing multiple
inquiries? Ftc. Based on the answers, the wizard will
perform the actions needed to build a standard
implementation of such a dialogue. Afterwards the
designer can work on from the template dialogue created
by the wizard.

¢ Guardian-wizards are active agents that are looking over
the shoulder of the dialogue designer, warning him about
problematic constructs and recommending alternatives.
Guardian-wizards may be triggered indirectly by actions
performed by the dialogue designer. An example could be
a wizard warning that a particular recognition vocabulary
is stressing the speech recognition and is likely to yield
bad recognition performance. The wizard may then advise
the designer to use an extra turn to reduce the perplexity of
the individual turns.

Wizards for use in spoken dialogue design systems is still an
unexplored area. The Dialogue Creation Environment will
initially have very few wizards available. It is anticipated that
tasks for which useful wizards can be made will become
apparent through the process of building dialogues using the
tools.

3. CONCLUSION

A common requirement for the user organisations in REWARD
is the ability both to implement and deploy new spoken
dialogue applications within a very short time frame and to be
able to continuously update existing spoken dialogue services.
An important step for the organisations in achieving this goal is
to develop and maintain their spoken dialogue services in
house. The REWARD Service Creation Environment aims at
simplifying the process of constructing a spoken dialogue
system to the level where non-specialists given a reasonable
amount of training can learn how to implement and deploy
spoken dialogue systems within their domain of expertise.

Due to the revision of the project mentioned in the introduction,
the users have not yet had time for a proper evaluation of the
Service Creation Environment. However, the strong user
involvement in the specification and design phases gives reason
to believe that the environment achieves the stated goals in
terms of both functionality and ease of use.

A release of the Dialogue Creation Environment for educational
and scientific use is planned. A more portable runtime system
needs to be developed for this release. The NLP modules will
be made available also as an independent distribution.

10.

4. REFERENCES

O. Andersen, R. Kuhn, A. Lazarides, P. Dalsgaard, J.
Haas, E. No6th: “Comparison of two tree-structured
approaches for grapheme-to-phoneme conversion”.
Proc. of ICSLP 1996, pp. 1808-11.

A. Baekgaard: “A Generic Dialogue System”. Spoken
Language Dialogue Systems 10. R 96-101, CPK,
Aalborg University 1996.

T. Brgndsted, L.B., M. Manthey, P. Mc Kevitt, T.
Moeslund, K.G. Olesen: “The Intellimedia WorkBench
- an environment for building multimodal systems”.
Second International Conference on Cooperative
Multimodal Communication, Theory and Applications.
Tilburg 1998, pp. 66-70.

T. Brgndsted, L.B., P. Dalsgaard, M. Manthey, P. Mc
Kevitt, T. Moeslund, K.G. Olesen: A platform for
developing Intelligent MultiMedia Applications.
Technical Report R-98-1004. CPK, Aalborg University
1998.

T. Brgndsted: “The Linguistic Components of the
REWARD Dialogue Creation Environment and Run
Time System”. 4th [EEE WS on IVITA. Turin 1998. In

press.

T. Brgndsted: “The Natural Language Parsing Modules
in REWARD and IntelliMedia 2000+”. S. Kirchmeier-
Andersen, H.E. Thomsen (eds.): Proceedings from the
Danish Society for Computational Linguistics (DALF),
Copenhagen Business School, Dep. of Computational
Linguistics, 1998. In press.

Tom Brgndsted: “Non-Expert Access to Unification
based Speech Understanding”. These Proceedings.

K. Failenschmid: “Spoken Dialogue System Design —
The Influence or the Organisational Context on the
Design Process”. 4th IEEE WS on IVITA. Turin 1998.
In press.

K. Failenschmid, S. Thomton: “End-user driven
Dialogue System Design”. These Proceedings.

K. Power, C. Matheson, D. Ollason, R. Morton: The
grapHvite Book. For grapHvite v1.0. Entropic,
Cambridge Research Laboratory. Cambridge 1996.

