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ABSTRACT

In this study, we investigate the effectiveness of an un-
known word processing(UWP) algorithm, which is incor-
porated into an N-gram language model based speech
recognition system for dealing with filled pauses and out-
of-vocabulary(OOV) words. We have already been inves-
tigated the effect of the UWP algorithm, which utilizes a
simple subword sequence decoder, in a spoken dialog sys-
tem using a context free grammar(CFG) as a language
model. The effect of the UWP algorithm was investigated
using an N-based continuous speech recognition system on
both a small dialog task and a large-vocabulary read speech
dictation task. The experiment results showed that the
UWP improves the recognition accuracy and an N-gram
based system with the UWP can improve the understand-
ing performance in compared with a CFG-based system.

1.INTRODUCTION

There exist many challenging issues for dealing with spon-
taneous speech in a spoken dialog system. In such situa-
tion, the performance of a system is greatly affected by the
ability to deal with spontaneous speech phenomena. Also,
we will encounter the out-of-vocabulary word and out-of-
grammar sentence problems for the lack of task-specific
knowledge and insufficient modeling of language model.

The approaches of garbage modeling and the use of pho-
netic typewriter have been reported to deal with unknown
words and filled pauses[1, 2]. Although the detection per-
formance of unknown words may be poor if the vocabulary
size is large and when it is applied to a continuous speech
task where the word boundary is ambiguous, an unknown-
word processing method which is based on a subword se-
quence decoder or phonetic typewriter would have better
performance when the acoustic model has high accuracy.

In this study, we investigate the effectiveness of an un-
known word processing algorithm(hereafter, referred to as
UWP algorithm), which is incorporated into an N-gram
language model based speech recognition system for deal-
ing with filled pauses and out-of-vocabulary(OOV) words.
While a context-free grammar(CFG) is often used as a
language model for read speech and written text, also
ill-formed sentences and the linguistic phenomenon of an
inversion should be treated for dealing with spontaneous
speech. As a result, the increase in the complexity of such
a language model may become serious. While we have
already been applied the UWP to a speech recognition sys-
tem based on the CFG and shown the effectiveness of UWP
algorithm[4], this study applies the UWP to an N-gram
based speech recognition system and compares the perfor-
mance with the case of CFG language model to investigate
the effectiveness of UWP algorithm. The evaluated utter-

ances are spontaneous speech for a small task and read
speech for a large vocabulary dictation task.

2. UNKNOWN WORD PROCESSING
IN N-GRAM BASED SYSTEM

2.1. Principle of Unknown-Word Pro-
cessing

If we construct the acoustic models based on subword
units, unknown words can be modeled as an arbitrary se-
quence of subword units. Some researchers have already
presented the results of the UWP method based on this
principle. Asadi et al. introduced some new word models
which consist of sequences of phonemes and their models
are separately created for each open class that accepts new
words[2]. A problem of computational cost would arises
when a number of open classes are described since the ver-
ification of new word models for each open class has to
be done independently. We have proposed an UWP algo-
rithm which utilizes the intermediate result obtained dur-
ing the process of subword sequence decoding or a phonetic
typewriter[4]. This method allows a computational cost al-
most independent of the vocabulary size and the complex-
ity of language models. In the following subsections, the
algorithm for incorporating UWP into an N-gram based
one-pass beam search algorithm is described.

2.2. Dealing with Out-of-Vocabulary
Words

Our continuous speech recognition system is implemented
based on a standard one-pass beam search algorithm. The
search algorithm employs a tree-organized lexicon in which
each node corresponds to a subword unit and generates
copies of nodes to hold the cumulative likelihood of differ-
ent word context which is remained within a beam width in
the search process[6]. Recently, the search algorithm was
improved by changing the search algorithm such that the
tree nodes of different word context are shared. This ap-
proximation has already been applied in some continuous
speech recognition systems[5] and shown that the compu-
tational cost can be reduced with no significant decrease
in the recognition accuracy.

A phonetic decoder is employed for generating the candi-
date of unknown words. The phonetic decoder is based on
the one-pass DP algorithm and can decode a most likely
phonetic sequence at each processing time. Thus, we in-
vestigate a method that both the main search process and
the phonetic decoding process run in parallel and the latter
hypothesizes unknown words which end at each processing
time. At each frame time, a set of unknown-word candi-
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Figure 1: Concept of unknown-word processing
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Notation:
N: vocabulary size

start[z]: beginning frame of the z-th candidate of
unknown-word with the length of z sub-
word units
Sunk (¢4;2): acoustic score of the z-th unknown-
word(UNK) candidate which begins from
start[z] and ends at the i-th frame
L. (%): cumulative acoustic and linguistic score of
an optimal hypothesis which ends by word
n, given an observation sequence of 1 ~ 3
frames
Lynk (% §,n): cumulative acoustic and linguistic score
of an optimal hypothesis which ends by
unknown-word(UNK), preceded by word n
which ends at the j-th frame
B,,(%): back-pointer of word n at the frame ¢
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Execute steps 2,3,4 for all the unknown-word
hypotheses(z = 1,2, - --) which end at ¢-th frame.
J — start[z] — 1

Execute steps 4,5 forn =1,2,---, N.

Update L,,(¢) with Viterbi algorithm
Lynk(54,m) = Ln(j) - Sunk(i;2) - P(UNK|n)
I, = arg manE{start[z]:z;lﬂ,...},n LUNK(i;ja n)
Lunk(i) = max Lunk(i 1, #)

Bunk(i) =3
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Figure 2: Unknown-word processing algorithm
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dates is obtained by backtracking the optimal path that
ends at that time and considering a part of subword unit
sequences with a different start frame time as a different
hypothesis. In this study, the length of unknown-word can-
didates is restricted to contain only 2~10 syllables. Figure
1 illustrates the above UWP algorithm in which a most
likely unknown-word candidate is selected at a processing
frame.

Figure 2 shows the UWP algorithm at the i-th frame in
the one-pass search algorithm. For simplicity, the algo-
rithm assumes that a bigram language model is used and
therefore the cumulative likelihood score and correspond-
ing back-pointers should be updated and held for each
word and frame time.

The N-gram probability p(UN K|w), where UN K denotes
unknown words, is estimated by replacing all the OOV
words in a training text corpus with a special symbol.
Since the UNK can represent a number of OOV words,
the estimated probability p(U N K|w) becomes higher than
that of each different word which was replaced with
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candidates of extends the ending point of candidates
filled pauses(FP) (e.g. words "no" & "ga") which are likely
to be followed by filled pauses

Figure 3: Concept of unknown-word processing for filled
pauses

UNK. Therefore, a penalty score should be added to each
unknown-word hypothesis when N-gram probability is ap-
plied. The penalty score may be empirically determined
by considering the number of different words which belong
to UNK in a training text.

2.3. Dealing with Filled Pauses

In most spoken dialog systems, filled pauses are ignored
in the process of speech understanding and dialog man-
agement. Although only limited kinds of interjections are
frequently observed in a human-to-human dialog, the re-
sult also reveals that other about 10% of filled pauses can
have many kinds of transcriptions and uncertainty in the
pronunciation[7]. In our previous study, we have applied
the UWP for dealing with filled pauses and attained the
result which is comparable with an approach in which fre-
quent 10 interjections are registered to a lexicon[4]. Thus,
we also incorporate the UWP into our N-gram based search
algorithm and investigate the effectiveness of this approach
for dealing with filled pauses as well as unknown words.

In general, the N-gram statistics for filled pauses may not
be estimated since it is not practical to collect a sponta-
neous speech and text corpus on a specific task. Thus,
we ignore the N-gram statistics for filled pauses and the
UWP algorithm for dealing with filled pauses was slightly
changed from the one in the previous section. When a lin-
guistic probability for a sentence hypothesis is calculated
by N-gram model, all filled pauses are ignored and skipped.
To prevent false alarms of filled pauses from increasing, we
introduce a penalty score which controls the possibility of
detecting filled pauses. Figure 3 illustrates the concept of
a modified UWP algorithm for filled pauses.

At a processing frame time ¢, if a cumulative likelihood
of the unknown-word hypothesis preceded by a word n is
higher than that of the word n preceded by any words,
we can assume that the word n is ending at the frame i
with the former likelihood score while in fact we can detect
that the word n is followed by filled pauses in this case.
As in the case of out-of-vocabulary words, the length of
unknown-word candidates for filled pauses is restricted to
contain only 2~3 syllables.

3. EXPERIMENTAL RESULTS
3.1. Systems for A Spoken Dialog Task

The experiments of evaluating language models and speech
recognition systems are carried out using text and speech



Table 1: Language models and test conditions

| Language model [ CFG | bigram |
Vocabulary size 241
OOV rate(%) 0.9
filled pauses(%) 4.4
Acceptance rate(%) 87.0 93.0
Test set perplexity 78 24

corpora on a task domain of “Traveler’s information guid-
ance around Mt.Fuji.” Language models of context-free
grammar(CFQ) are also used to compare with the word bi-
gram language models. Furthermore, two types of text and
speech corpora, which correspond to the read and sponta-
neous speech, respectively, are used.

The acoustic models used in this experiment consist of
113 syllable based HMMs(Hidden Markov Models). Each
syllable-unit model has 5 states, 4 Gaussian densities with
full-covariance matrix and 4 discrete duration distribu-
tions. Feature parameters consist of 10-th order LPC mel-
cepstral coefficients and their regressive coefficients.

In the first experiment, a text corpus which contains 357
different words and 914 sentences is used for training
and building language models, while a part of vocabulary
words(116 words) are labeled as an OOV word in the train-
ing corpus and excluded them from a lexicon in the speech
recognition system. Also a read speech corpus which in-
cludes various speech disfluencies and ill-formed sentences
is used. The text corpus is collected by 53 subjects who
are asked to think out and write down some query sen-
tences in condition that available vocabulary words are
presented in advance. A set of 115 sentences is uttered by
2 male speakers and they are used as the test set for eval-
uating language models and speech recognition systems.
The test sentences include interjections(filled pauses) in 18
sentences and restarts in 17 sentences. The ill-formed sen-
tences which are included in the test sentences and some
other likely sentences are accepted in the CFG model. The
summary of language models are shown in Table 1.

Table 2 shows the experimental result of a bigram-
based speech recognition system, with different penalty
for unknown-word candidate. The penalty is added to a
log-likelihood of the unknown-word candidate according to
the number of subword units contained. To investigate the
performance of the UWP, the following two measures are
used:

Recall rate = NUa/NU.
Precision = NUg/NU,,
where

NU,:
NU,:

number of unknown words or filled pauses uttered
number of unknown words or filled pauses cor-
rectly detected

number of words output as unknown words or
filled pauses

NU:

This result shows that the UWP algorithm used in a
bigram-based system can also improve the recognition per-
formance, attaining the word accuracy of 87.5% with the
UWP, in compared with the word accuracy of 84.7% with-
out the UWP. Although the unknown words often degrade
the recognition accuracy in a bigram-based system, a re-

Table 2: Results of bigram-based system
UNK: unknown words  FP: filled pauses

UWP & Word Recall rate(%) | Precision

Penalty || accuracy (%) | UNK | FP (%)

no UWP 84.7 - - -
—40 86.7 43.8 61.4 50.3
—45 87.3 31.3 65.7 56.3
—50 87.5 37.5 65.8 60.7

Table 3: Comparison of sentence-level performance
| Language model || Sent.cor.(%) | Sem.acc.(%) |
CFG 57.2 82.5

Bigram 55.9 86.9

Table 4: Language models for spontaneous speech

| Language model [ CFG | bigram |
Vocabulary size 359
OOV rate(%) 1.8
filled pauses(%) 0.2
Acceptance rate(%) 80.1 88.3
Test set perplexity 130 9

call rate of 65.8% and a precision of 60.7% were attained
using the UWP for filled pauses.

Table 3 shows the sentence-level recognition accuracy
which is important for spoken dialog system. The se-
mantic accuracy(Sem.acc.) is the same as sentence cor-
rect(Sent.cor.) except that the errors on postpositional
particles are ignored, because these errors are corrected
when a dialog system understands their intention for a
simple spoken dialog task[8]. Although the CFG-based
system is slightly better than the bigram-based system as
for the sentence correct, the latter attained a better seman-
tic accuracy. This result shows that the UWP can also be
successfully applied for a bigram-based system.

In the second experiment, spontaneous speech and tran-
scribed text data are used. Their data have been collected
through the experiments in real condition that 24 naive
users are asked to plan a travel using our spoken dialog
system. Each text and speech corpus are separated into
training and test set. Test set consists of 437 sentences ut-
tered by 4 speakers and remaining 2063 sentences are used
for training and building language models (359 vocabulary
words).

Table 4 shows the test conditions in terms of language
models. The significant difference in the perplexity is due
to the fact that the test sentences contain only 5.9 words in
average and all possible sentences with an inversion, which
mean those with no constraints on the phrase order, are
taken into account in CFG case, while the utterances of
this sort is very few in the training text corpus.

Table 5 shows the experimental result of both the bigram-
based and CFG-based systems. The UWP penalty per
subword unit length was set to -60. In this experiment,
the use of the UWP didn’t lead to a significant improve-
ment on the word accuracy. This is mainly due to the fact
that only a few kinds of OOV words are included in the test
sentences and a frequent OOV word could not be detected
in most cases since it was similar to a registered word in its
pronunciation. However, we find that the UWP does not
degrade the performance in compared with a baseline sys-



Table 5: Experimental result of spontaneous speech

Table 6: Result of a large-vocabulary dictation task

Language model | Word acc. | Sent.cor. | Sem.acc. ALL Limited with rejection
& UWP (%) (%) (%) Language model, || Word || Word | Recall | Precision|
[ bigram, no UWP || 91.5 [ 728 | 847 | UWP & Penalty | acc.(%)|| ace.(%)| rate(%) (%)
CFG, with UWP 73.3 39.3 76.9 bigram, no UWP || €5.0 || (85.9)| - -
bigram, with UWP 91.8 69.1 88.6 bigram, —log10 58.1 87.5 95.0 84.7
bigram, —log5000 64.5 74.5 60.3 91.1
tem. Furthermore, the superiority of N-gram based speech bigram, —log290000|| 65.8 68.9 28.5 95.8
recognition system is also observed in this experiment us- trigram, no UWP 66.7 || (87.3) — —
. , . .
ing the spontaneous speech corpus. trigram, —logl0 || 62.6 || 86.8 | 95.8 | 82.4
3.2. A Large-Vocabulary Dictation Task trigram, —log5000 || 67.4 || 79.8 | 75.7 | 89.2
trigram, —log290000/| 68.1 72.4 431 93.6

In this study, we also performed an experiment to inves-
tigate the effect of the UWP on a large-vocabulary task.
We used a newspaper article text database of the Mainichi
Newspaper for building N-gram language models. A train-
ing set consists of about 86 million morphemes from a pool
of 4 years articles. We built a bigram and trigram lan-
guage model with a vocabulary size of 5000 words. A test
set of speech data is a part of the ASJ continuous speech
corpus, Japanese Article Sentences(JNAS), and this exper-
iment used the utterances from 3 male speakers and about
100 different sentences for each speaker. The OOV rate of
the test set is 10.6%. The test set perplexity and the ad-
justed perplexity(APP)[10], which the number of different
unknown words in the test set is taken into account, are
74.8(APP = 141) for bigram and 50.4(APP = 94.9) for

trigram, respectively.

In this experiment, we used a segment-unit input HMM][9],
which has the same topology with the HMM described
in Section 3.1.. The output probability has used 4
Gaussian mixtures per state and the feature parame-
ters consist of a 20-th order segmental feature, and both
the linear and quadratic regressive coefficients of 10-th
order mel-cepstral coefficients( AMCEP,AAMCEP) and
energy(AE,AAE)[9].

Table 6 shows the performance of a speech recognition sys-
tem with N-gram language model and the UWP. An N-best
sentence candidate list was obtained from a bigram-based
system and re-scored by a trigram language model. The
unknown-word penalty per subword unit was fixed to -50
and the penalty for OOV bigram probability was changed
from log 10 to log 290000 since there were about 290 thou-
sands of different OOV words in a training corpus and the
probability may be over-estimated. The values in paren-
theses are the performance on a part of utterances which
do not include OOV words. In compared with the word ac-
curacy on the limited utterances rejected or without OOV
words, the result on all utterances shows relatively low
performance for a small vocabulary size and a high OOV
rate. We also evaluated a rejection performance with the
measures of a recall and precision, which are calculated by
a detection-per-sentence basis (i.e., one decides whether
some unknown words are contained or not for each sen-
tence) since the existence of unknown words will often af-
fect the surrounding words in a continuous speech.

While the result shows that the improvement of the word
accuracy is not significant, a high recall and precision rate
is obtained. This is due to the fact that the UWP often
detect an unknown word with an incorrect word boundary
since it does not use strong constraint on the unknown-

word hypothesis. However, this result also reveal that the
UWP may be effectively used to deal with spontaneous
speech since it can be used to detect the existence of OOV
words.

4. CONCLUSIONS

We have investigated the effectiveness of an unknown-word
processing method for dealing with spontaneous speech
phenomena in N-gram based speech recognition system.
The experimental result showed that the N-gram lan-
guage model which includes OOV statistics and used in
an unknown-word processing can be more effective for
a spoken dialog system in compared with a grammar-
based speech recognition system. We also showed that the
unknown-word processing can improve the performance on
a large-vocabulary dictation task, while the result also sug-
gested that more detailed constraint for detecting unknown
words should be introduced.
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