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ABSTRACT

Although having revealed to be a very powerful tool
in acoustic modelling, discriminative training presents
a major drawback: the lack of a formulation guar-
anteeing convergence in no matter which initial con-
ditions, such as the Baum-Welch algorithm in maxi-
mum likelihood training. For this reason, a gradient
descent search is usually used in this kind of problem.
Unfortunately, standard gradient descent algorithms
rely heavily on the election of the learning rates. This
dependence is specially cumbersome because it repre-
sents that, at each run of the discriminative training
procedure, a search should be carried out over the pa-
rameters ruling the algorithm. In this paper we de-
scribe an adaptive procedure for determining the op-
timal value of the step size at each iteration. While
the calculus and memory overhead of the algorithm
is negligible, results show less dependence on the ini-
tial learning rate than standard gradient descent and,
using the same idea in order to apply self-scaling, it
clearly outperforms it.

1 INTRODUCTION

During the last years, discriminative training (DT)
has proved to be a powerful tool in acoustic model-
ing for automatic speech recognition. Most discrim-
inative training frameworks are based on the use of
an auxiliary function that somehow characterises the
behaviour of the system under real conditions. We
shall refer to this function as loss function, LF, al-
though the results herein presented can be also applied
to quality measures such as the mutual information.
The objective of DT is to obtain the set of parameters
(A*) that minimises LF(A). As a multi-dimensional
non-linear problem, DT presents several characteris-
tics that make most classical algorithms either unaf-
fordable or unreliable. For instance, they involve a
great number of parameters—more than 150,000 in the
examples considered in this paper. As a result, most
work done so far makes use of any kind of gradient
search relying on the fact that a small enough move-
ment in the direction of the negative gradient always
leads to an improvement in the loss function.

In this paper we propose the use of a simple adap-
tive gradient search algorithm (AGS) that provides a
way to overcome most of the problems associated with
the election of the step sizes, ¢, in gradient descent
search. We shall compare the results obtained using
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AGS with those obtained with standard gradient de-
scent (GD) in the minimisation of the task indepen-
dent confusibility of a phone HMM based continuous
speech recognition system. The details of the system
are explained in a companion paper [3].

2 GRADIENT DESCENT IN DT

GD is one of the most widely used strategies in order
to cope with the optimisation of loss functions in DT
[1]. Being L£F(A:) the loss function for system A at
time ¢, the following actualisation of the parameters of
the system

A1 = Ay — e VLF(Ay) (1)

ensures that LF (Apy1) < LF(Ae), aslong as LF(A) is
continuous and &; is a positive quantity small enough
to ensure that the first order approximation applies.
This actualisation procedure leads to an iterative al-
gorithm that, for continuous functions, is guaranteed
to converge, at least, to a local minimum. In its sim-
plest implementation, the step size, &, is kept con-
stant during the whole optimisation procedure. In the
following, we shall refer to this method as gradient de-
scent (GD).

The main drawback of gradient descent methods is
that they rely heavily on the election of the step size se-
quence because the convergence to a solution depends
on the form of the landscape of the function LF(A). If
the values are chosen too big, the first order approxi-
mation will not apply and the system will probably not
converge. If too small, convergence will be slow and
the probability of being caught in a local minimum
is higher. As a result, the step sizes themselves need
to be optimised each time a discriminative training
is scheduled. As the step size sequence is completely
defined by the election of g, the step sizes may be
optimised via a simple line search over this value. Un-
fortunately, this optimisation may be extremely costly
because, at each iteration of the line search over e,
a complete optimisation of the system parameters A
must be carried out. The situation is specially serious
if we consider that the optimal values of the step size
series may depend on other parameters affecting ei-
ther the system or the optimisation algorithm. Thus,
whenever a change is done in any of these parameters,
a new optimisation of the step sizes must be done in
order to guarantee that the convergence conditions are
consistently met. This is the case, for instance, if we
want to evaluate the effect of changing the number
of states of the HMM’s or the number of hypotheses
congsidered in DT.



2.1 Experimentation Using Gradient
Descent

We have applied GD to the minimisation of the task in-
dependent confusibility on a phone based CSR system.
2608 utterances from the train male corpus of TIMIT
were used to train phone HMM’s. The parameters
of the system were adapted every 400 utterances, i.e.
some 6.5 times per complete cycle through the whole
training corpus. Five different step sizes, spaced by a
factor of 10, were tried in order to show the margin
of values for which the algorithm converges, as well
as what happens if this value is multiplied or divided
by 10. Figure 1 plots the evolution of the phone error
rate in the phone recognition of the test male corpus
of TIMIT during 10 complete cycles of GD. There are
two remarkable things:

o All five ¢’s improve the baseline result. Never-
theless, over-shooting—an excessive step size—is
noticeable for the biggest one, and under-shooting
for the smallest.

e Even for the two mid values, those that present
best convergence, the difference in performance is
almost one point in the error rate.

3 ADAPTIVE GRADIENT SEARCH
ALGORITHM

One way to overcome the difficulties in the election of
the step sizes is using the method of steepest descent
(SD). Steepest descent is one of the most widely used
methods for minimising non-linear functions of several
variables. It works by applying Equation 1 with a
succession of step sizes ¢; defined by

gt = argmingc . o LF (A —eVLF(Ay)).  (2)

This expression not only avoids the ambiguity in the
step size values but also presents better convergence
properties than simple GD. The problem now is how to
evaluate the ¢4 that satisfies Equation 2. Ideally, a line
search over ¢ should be carried out at each iteration of
Equation 1, but this line search would be as expensive,
or more, as the evaluation of the gradient, so the com-
putational cost will even be higher than just optimising
go in GD. Nevertheless, and unlike other more sophis-
ticated methods as Davidon-Fletcher-Powell’s one, it
has been frequently observed that SD is not radically
affected by inaccuracy in the line search. This is so be-
cause SD is strictly a gradient descent method. This
means that, at each time ¢, the direction of update
of the parameters of the system, A, is the gradient of
LF(A), which, in turn, represents the direction over
which maximum improvement in the loss function is
achieved with the minimum perturbation of the pa-
rameters. Even if Equation 2 is not verified, a closed
enough approximation will lead to a solution that will
be, at least, as good as if we took a small enough
step to ensure that the first order approximation holds.
Yet, it is arguable if an exact solution to Equation 2
is needed. Although it would guarantee good con-
vergence properties for pure quadratic functions, we
do know that this will not be the case for the kind
of functions being optimised in DT. So accurateness
in the line search will be voided by the errors in the
quadratic assumption.
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Figure 1: Phone error rate evolution using GD

We will use this flexibility in the line search of SD in

order to develop a very simple method of estimating

convenient values for e;. Lets suppose that LF(A) is

aQ pure quadratic form with positive definite Hessian,
,le

LF(A) = ATQA — ATh. (3)

In this case, the line search carried over the direction of
the gradient becomes a simple parabolic optimisation
problem because the projection of a quadratic form
over any direction is a parabola. One convenient way
of performing line search over a parabola is the so-
called method of false position. It is based on the fact
that the derivative of a parabola is a straight line. As
the minimum of the parabola corresponds to the point
where this line equals zero, two different values of the
derivative are enough to determine where this hap-
pens.

Lets consider now, with the above assumptions, how
we can get to the optimal value A} that optimises
LF(A) along the line Ay — uVLF(Ay), where p is
any real non-zero value. We define g = —VLF(Ay),
Ay = Ay + pge and g, = —VLF(A'y). At Ay, the
partial derivative of the loss function in the direction
of g; is the projection of the gradient at this point, g';,
over g¢/||g¢||. Then

T

* gi 8t '

A} = M+ —"— (A —Ay)
gl —gle:
T
gt 8t
= M—p———7—g
gfg— gl e

= Ay —eige (4)
Where ¢f = “ﬁ is the optimal step size that

leads to A} applying Equation 1. Two things are re-
markable about Equation 4:

o It leads to A} with independence of u, so one
posible—and probably convenient—choice for p
i8 £p1.

. Dué t(l) the parabolic approximation, the value ob-
tained for £f is also optimal if Equation 1 is ap-
plied from A’y substituting the gradient at this
point, g',, by its projection over g;.



These two properties enable a short cut in the SD pro-
cedure: we move from A; to Agq with the value of e,
that would have led to A} ; if this step size were only
applied to the component of the gradient at A; par-
allel to the gradient at A;_; Instead of applying it to
this only component—as would require strict SD—we
apply it to the whole gradient. We cannot ensure that
this value will verify Equation 2 at any time ¢, but it
would be equivalent to getting to A} ; —thus optimis-
ing the line search for time ¢t — 1—and using this same
step size as an estimate of the optimal one in the direc-
tion of the orthogonal component of the gradient—in a
way performing an additional line-search !. Any way,
the algorithm ensures that any movement done during
the iterative search will be optimised in the following
iteration. As a result, the step size taken at time ¢, &,
is the step size taken in the previous iteration multi-
plied by an actualisation term &;:

gt = =VLF(Ay)
ét - T gtT_lgt_il"
gi_18-1-8 &8-1 fort>0 (5)
&t = &g
Apr = Ap— gy

3.1 DPositive Definiteness of the Hes-
sian

Equation 5 is only valid for loss functions with positive
definite Hessian. If this is not the case, and in general
it will not, then the second derivative along any given
direction may be negative. In this situation, actually a
line search, the negativeness is not as serious as in the
case of multi dimensional optimisation. Yet, it is eas-
ily detected—the value g!'g;/g:g; will be greater than
one—, and may be eagily corrected. A negative value
of the second derivative simply indicates the presence
of a maximum, instead of a minimum, in the second
order approximation. So its value has little signifi-
cance in a minimisation problem. As a matter of fact,
the problems with the value of gl g; 1/g:—18:—1 do
start when it gets close to one. This is because, for
values greater than zero, the method of false position
becomes an extrapolation instead of an interpolation.
As it gets close to one, £;_; grows until reaching in-
finity at this value, and becoming negative for values
above it. Nevertheless, the direction of the gradient is
always the maximum benefit one. Moreover, assum-
ing the parabolic approximation, a positive value of
gl'g: 1/g:_1g:_1 means that moving along the direc-
tion of the gradient, g:—1, not only is beneficial at time
t — 1, but will also be at time ¢. Thus it seams reason-
able to think that a greater value of the step size at
time ¢ — 1 could have been enough to get to that same
point in one iteration less. This leads to an iterative
procedure similar to Equation 5, but with a different
T
formulation for the evaluation of ¢; when gthg#z >a
t—1 -
being 0 > a > 1 —we use a value ¢ = 0.75 in our
experiments—.

T
g: 8t—1 >a

T
)_1 B Bt-1 for - >
g 18t-1 (6)

ét =1+ (1 —a T
g 18t—1

INotice that A = A’y for all ¢
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Figure 2: Phone error rate evolution using AGS

3.2 Experimentation Using Adaptive
Gradient Search

We have applied this algorithm to the same task of
Section 2.1. Figure 2 plots the evolution of the error
rate during ten iterations of the method. The same five
initial €¢’s used in GD are used now. The evolution
of the error rate for the two best runs of GD is also
plotted—with dotted lines—for comparison purposes.

It stands out that, for all five initial step sizes, per-
formance achieved using AGS is very similar to that
achieved with the best run of GD, being, in all cases,
superior to the second best run. Moreover, the vari-
ance in the results is now much smaller than in the
case of GD. Yet, the variance in the results is now
similar to the confidence margin—with a total num-
ber of 4284 phones, the 95% confidence margin in the
error rate is some +0.7%—so we believe that the fi-
nal discrepancy in the results is more dependent on
their estimation than on the magnitude of the initial
step-size. It is significant that, now, the evolution in
the error rate is very similar in all cases. This result
confirms that AGS is much less sensitive to the initial
step size chosen. As a matter of fact, the algorithm
neutralises the effects of this election after the first
few iterations—employed in removing both under and
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Figure 3: Evolution of ¢; in AGS



over-shooting—, and then &; evolves similarly in all
cases. This behaviour is depicted in Figure 3.

3.3 Adaptive Interpretation

The algorithm in Equation 6 has an adaptive interpre-
tation. Following this interpretation, the movement
done at time ¢, d; = —e4g is decomposed into two
components df’ and dlY, being the first parallel to the
direction of g;—1, and the second its conjugate. The

parallel one, df, can be seen as a correction to the
movement, done at time ¢t — 1. If d;_; was too small in
magnitude, df will grow in the same direction as d;_1
and Equation 6 will make bigger the step size. If it is
too big df’ will decrease in the direction of d;_; and the
step size will be made smaller. The value of &; is then
adapted at each iteration until £; equals one, in which
case successive movements in the gradient descent pro-
cedure are taken in orthogonal directions. Conver-
gence of the algorithm is ensured at time ¢ whenever
the Hessian of LF is semi positive definite inside the
region {A, : Ay VA1 | 0< p<eg_1}. This
region of convergence extends the one of GD to all
convex regions.

3.4 Self-Scaling of the Variables

SD is very sensitive to the eigenvalue structure of the
Hessian of the loss function [2]. Specifically, conver-
gence of SD degrades fast when the ratio between the
highest and the lowest eigenvalues grows. On the con-
trary, if this ratio is kept close to the unity, conver-
ence is ensured in just one step of SD for quadratic
orms. One way to modify the structure of eigen-
values of the Hessian, while keeping the location of
the minima unaltered, is substituting VLF(A) with
UV LF(A), where U is a suitable definite positive ma-
trix. If U is chosen to be diagonal, this procedure is
equivalent to a linear scaling of the variables, and can
be seen as using a different step-size for each variable.

In the case that the Hessian of the loss function is di-
agonal by blocks, the projections of the gradient over
each of the hyperplanes that define the different blocks
will bring a set of directions that will be both decou-
pled and orthogonal. Each of the hyperplanes will de-
fine a sub-space where the values of the gradient do
not depend on the values of the variables lying in any
other hyperplane. The decouplement between the dif-
ferent projections of the gradient enables the so-called
conjugate directions method to be implemented in a
concurrent way: for each of the N conjugate compo-
nents in which the gradient at time ¢ is decomposed,
gy, we estimate the value of the different 7 using
Equation 6 independently on each of them, and ac-
tualise the parameters of A with the composite move-
ment Ay = A=), efgy. Although the Hessian will
not be, in general, diagonal by blocks, it seems reason-
able to consider that parameters corresponding to a
same kind of parameter—transition or emission prob-
abilities, mean or variance of the codebook, etc.—,
and a same unit will be more tightly coupled than pa-
rameters corresponding to different kinds or units. In
this way, the problem of determining a convenient scal-
ing can be reduced to applying AGS independently on
each kind of parameter and each unit.
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Figure 4: Error rate of AGS with self-scaling

In our implementation of this algorithm, we perform
AGS independently for each kind of parameter at odd
iterations, and independently for each unit at even
ones, in this way we arrive to a different value of &}
for each kind of parameter and unit, while relaxing the
diagonal by blocks assumption at each iteration. Even
in the case that the different hyperplanes are coupled,
the convergence of the method will not be too much
affected because AGS will force convergence in all of
the hyperplanes independently. Yet, as neither over
or under-shooting will be allowed for any of the direc-
tions chosen, this procedure will be more controlled
than just estimating one common step size.

Figure 4 shows the evolution of the performance of
the algorithm when this scaling is performed, as well
as the best result achieved with GD and AGS with-
out scaling. It stands out that applying of self-scaling
not only improves convergence but also leads to much
better results than either of the two other methods.
This result was also previously stated using the gradi-
ent probabilistic descent algorithm [1].
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