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ABSTRACT

This paper proposes a method to re-estimate output vi-
sual parameters for speech-to-lip movement synthesis us-
ing audio-visual Hidden Markov Models(HMMs) under the
Expectation-Maximization(EM) algorithm. In the conven-
tional methods for speech-to-lip movement synthesis, there
is a synthesis method estimating a visual parameter se-
quence through the Viterbi alignment of an input acous-
tic speech signal using audio HMMs. The HMM-Viterbi
method produces the output visual parameters per HMM
state specified by the decoded HMM states. However,
the HMM-Viterbi method involves a substantial problem,
which is caused by the deterministic decoding process to
assign a single HMM state for an input audio frame. The
deterministic process may output incorrect visual parame-
ters due to incorrect HMM state alignment. The proposed
method avoids the deterministic decoding process by the
non-deterministic visual parameter estimation by the EM
algorithm. The proposed method repeatedly estimates the
visual parameter sequence while maximizing the likelihood
of the audio-visual observation sequence using audio-visual
HMMs. The objective evaluation shows that the proposed
method is more effective than the HMM-Viterbi method
especially for the bilabial consonants.

1. INTRODUCTION

Lip movement synthesis can play a significant role in
human-machine communication. If lip movements are syn-
thesized well enough to do lip-reading, hearing impaired
people may be able to estimate auditory information from
the visualized computer agent.

This paper investigates synthesis methods for realizing
human-like lip movements by mapping from acoustic
speech signals to visual parameter sequences. The lip
movement synthesis from acoustic speech signals also per-
mits lip-synchronization between input acoustic speech
signals and a synthesized lip image sequences. Lip-
synchronization is one of the techniques for human-like
visualized computer agents in interactive communication
systems.

Mapping algorithms from acoustic speech signals to lip
movement sequences have been reported based on: Vec-
tor Quantization(VQ)[1], Artificial Neural Networks[2]

and Gaussian Mixtures[3]. These methods are based on

frame-by-frame(or frames-by-frames) mapping from acous-
tic speech parameters to visual parameters. These map-
ping algorithms have two major problems: 1) frame-by-
frame mappings are fundamentally many-to-many, and 2)
extensive training sets are required to account for context
information.

A different approach utilizes speech recognition technique,
such as phonetic segmentation[4] and Hidden Markov
Model (HMM)[5][6][7][8]. These methods convert acous-
tic speech signals into visual parameter sequences based
on information such as a phonetic segment, a word, a
phoneme, an acoustic event and so on. These methods have
the advantage that explicit phonetic information is avail-
able to handle coarticulation effects caused by surrounding
phoneme contexts.

We have shown a synthesis method based on the Viterbi
decoding algorithm using audio phoneme HMMs(We call
the method the HMM-Viterbi method in the following) is
more efficient than the VQ method[8]. However, the HMM-
Viterbi method converts an audio parameter sequence to
a visual parameter sequence through a deterministic single
HMM state sequence. The deterministic process involves
a substantial problem, which may give rise to an incorrect
visual parameter sequence out of an incorrect HMM state
sequence. For example, if bilabial consonant is decoded
to other categories classified by place of articulation, the
synthesized lip movement would generate a sense of incom-
patibility to a viewer. To solve the problem, we extend the
HMM-Viterbi method with an un-deterministic process.

This paper presents a new method to estimate a visual pa-
rameter sequence from an input acoustic speech signal by
applying the Expectation-Maximization algorithm(HMM-
EM). The HMM-EM method repeatedly estimates the vi-
sual parameter sequence while maximizing the likelihood
of the audio-visual observation sequence using audio-visual
HMMs. The re-estimating operation is regarded as the
auto-association of a complete pattern out of an incom-
plete pattern for time series. In experiments, the HMM-

EM method is compared to the HMM-Viterbi method.
2. HMM-VITERBI SYNTHESIS
METHOD

The first method is a baseline, HMM-Viterbi[8], which is
composed of two processes, such as a decoding process
which converts an acoustic speech signal to a most likely



HMM state sequence by the Viterbi algorithm and a look-
up table process which converts an HMM state to corre-
sponding visual parameters per frame. The synthesis al-
gorithm of the HMM-Viterbi method is explained as the
following with Figure 1.

step 1 Analyze and convert an input acoustic speech sig-
nal to an audio parameter sequence.

step 2 Align the audio parameter sequence into an HMM
state sequence using the Viterbi alignment.

step 3 Retrieve the output visual parameter sequence as-
sociated with the HMM state sequence.

step 4 Synthesize a lip image sequence from the retrieved
visual parameter sequence to visualize the lip move-
ment.

The visual parameters per an audio HMM state are trained
by taking average for all visual parameters assigned to the
same audio HMM state.
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Figure 1: Algorithm of the HMM-Viterbi method
3. HMM-EM SYNTHESIS METHOD

3.1. Estimating Visual Parameters us-
ing the EM Algorithm

The quality of visual parameters synthesized by the HMM-
Viterbi method depends on the accuracy of the Viterbi
alignment. The incorrect HMM states assigned by the
Viterbi alignment may produce wrong visual parameters.
The proposed HMM-EM method does not depend on the

deterministic Viterbi alignment.

The proposed method re-estimates the visual parameter
sequence OV = 6V (1),6V(2)---8Y(T) for the given au-
dio parameter sequence 04 = 04(1),04(2)--- 0*(T) by
the EM algorithm using audio-visual HMMs. The ob-
servation sequence is the sequence of a vector consist-
ing of n-dimension audio ;e/a.rameters and m-dimension vi-
sual parameters, 0% @ 0. Although the visual param-
eter sequence does not exist initially, the required visual
parameters are synthesized iteratively from initial values
by re-estimation procedure maximizing the likelihood of
the audio-visual observation sequence using audio-visual
HMMs. The re-estimation of a visual parameter sequence
is formulated as

oY = arg mazx P(OA &) 0V|OA,MAV), 1)
o

AV . .
where O means an estimated visual parameter sequence.

The likelihood of the proposed method is derived by con-
sidering all HMM states at a time. To incorporate all states

of all HMMs, the likelihood of the audio-visual observation

sequence can be defined as following.
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where MV is the k-th audio-visual HMM, and P(M{Y) is
the model probability. 7;(M2Y), ai;(M2Y) and b; (0 (£)®
oV ()| M{V) are the joint initial state probability, the joint
transition probability and the joint output probability of
audio-visual parameters, respectively. @ represents a state
sequence. The summation of Q(all k) considers all models
M2V at a time. In the next section, derivation of the re-
estimation formula of visual parameter is described.

3.2. Algorithm of Visual Parameter Es-
timation

The re-estimation formula is defined to maximize the aux-
iliary function A(OV|OV) over an estimated visual param-
eter sequence OV.

A(0Y|0Y)
= Y PM")P(0* 90" |Q,MEY)
Q(all k)
x logP(M{")P(0* @ 0V |Q, M{V) (3)

In the EM algorithm, the maximization of the auxiliary
function is equivalent to increasing likelihood of an observa-
tion sequence. The re-estimation formula of visual parame-
ter at time ¢ is derived by differentiating the auxiliary func-
tion by the m-th visual parameter 8y, (¢). Let that the out-
put probability density function is mixed Gaussian distri-
butions with mean vector with p2(MAY, ), uk (MAY,5)
and covariance matrix (MY, ) with its components,
o (MY, 5), anv (MEY,5), ot (MEY,5). n,m are
the index of audio parameter dimension, and of visual
parameter dimension. |S(M2Y,5)| is the determinant of
B(MAY,7). The re-estimation formula is derived as fol-

lows:

1
P(ME (6 MY ) e
2 2 P M D v

2/ V,V(MAV ])
P(MAV)’y(t'MAV ]) mm k ‘,
2 2 PORT M, DT G T
P (MY ) S (M, 5)

1 =D (0A (1) — pAMAY ) LAY (MY, 5)

oV (t) =

(4)

where v(t; MV, ) is the state occupation probability in
state j of MV at time t. X'(M;V,7) means the adjoint



of Z(MAY,7). Thus Z,2V(M2V,j) means the compo-
nent of the n-th audio parameter and the m-th visual pa-
rameter. The formula (4) is derived under a constraint
that the covariance af;f(M,‘fv,j) =0at n # n and
U‘I‘Y/L‘X'( V,j) = 0 at m # m'. Furthermore, the re-
estimation formula is simplified as follows if the covariance
matrix is diagonal.
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The algorithm for the visual parameters re-estimating can
be summarized as the following with Figure 2:

step 1 Set the initial value for visual parameter oy, (¢).

step 2 Calculate ~v(t; M2Y,j) for all frames under
the Forward-Backward algorithm(EM algorithm for
HMM). Estimate 8Y,(t) using formula (5) at each
frame.

step 2’ If a convergence condition is satisfied, go to the
next step, otherwise return to step 2.

step 3 Synthesize a lip image sequence from the retrieved
visual parameter sequence to visualize the lip move-

ment.
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Figure 2: Algorithm of the HMM-EM method

4. LIP PARAMETER SYNTHESIS
EXPERIMENTS

4.1.

Speech and 3D lip position data for a female speaker
of Japanese were recorded at 125Hz using the OPTO-
TRAK, 3D position sensoring system. These 3D positions
were transformed into the visual parameters height(X),
width(Y) of the outer lip contour and protrusion(Z) based
on five parameters of the 3D lip model[9]. The audio pa-
rameter has 33 dimensions of 16-order mel-cepstral coeffi-
cients, their delta coeflicients and the delta log power.

Experiment Condition

Fifty-four phonemes and two pauses were modeled by for
audio HMMs of the HMM-Viterbi method and audio-visual
HMMs of the HMM-EM method. The pause models are
prepared separately for the word beginning and the word
ending. Triphone HMMs are not adopted, because the tri-
phone HMMs requires huge amounts of time synchronous
training data. Each audio HMM and audio-visual HMM
has left-to-right structure with 3 states, where an output
probability on each state has 256 tied-mixture Gaussian
distributions. HMMs are trained by the audio or audio-
visual synchronous database composed by 326 Japanese

Table 1: Compared Synthesis Methods
Training | Synthesis | Initial
Method params# | params# | visual
AV AV parameters
HMM-V 33| — 33| — —
HMM-EM-1 || 33 | 3 33 |3 HMM-V
HMM-EM-2 || 33 | 6 33 |3 HMM-V
HMM-EM-3 || 33 | 9 33 |3 HMM-V
HMM-EM-4 ([ 33 | 9 33 |3 Pause

words, which consists of phonetically balanced words. The
other 100 words are prepared for testing.

The measure to evaluate synthesized lip movements is Eu-
clidian error distance F between the synthesized visual pa-
rameters and the original parameters extracted from hu-
man movements.

In the HMM EM method, the state occupation probablh-
ties v(t; MY, 5) are updated after re-estimation of all vi-
sual parameters for the utterance.

4.2. Compared Synthesis Methods
To verify the effect of the HMM-EM method, the five syn-

thesis methods on Table 1 are compared in the experiment.
The HMM-EM method can be implemented by various
conditions. We tried to make the number of parameter
vectors fluctuate taking account of a dependency on the
quality of HMMs. In the HMM-EM-2 method, the visual
parameter vector consists of 6 parameters of 3 visual pa-
rameters and their time differential parameters. Likewise
the HMM-EM-3 method contains the acceleration part of
visual parameters in addition to parameters of the HMM-
EM-2 method. Note that in all HMM-EM methods the
number of the tied-mixture distribution is fixed at 256 as
well as that of HMM-Viterbi method. As for the initial
values for visual parameters, the HMM-EM-1,2,3 methods
use the visual parameters synthesized by the HMM-Viterbi
method and the HMM-EM-4 method uses a visual param-
eters of the lip closure shape at pause.

4.3. Results

The results of objective evaluation of the five methods are
shown in Table 2. Each column in Table 2 indicates the
error distances averaged by all frames or correctly decoded,
incorrectly decoded, and incorrectly decoded /p//b//m/
frames at the HMM-Viterbi method. In the errors averaged
by all frames, the HMM-EM-3 method reduces the error
distance by 1% against the HMM-Viterbi method. The
HMM-EM-4 method gives a large error due to the flat start

Table 2: Error distances of synthesis methods

E cm

All All All /p//b//m/

Correct | Incorrect | Incorrect
HMM-V 1.066 1.062 1.075 1.701
HMM-EM-1 1.093 1.106 1.051 1.370
HMM-EM-2 1.063 1.077 1.021 1.392
HMM-EM-3 1.052 1.072 0.989 1.254
HMM-EM-4 1.207 1.231 1.134 1.061
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Figure 3: Errors by consonant category

of the lip closure.

We investigate errors of the HMM-EM-1,2,3 methods
under incorrectly decoded frames at the HMM-Viterbi
method. Their errors are compared with detailed three cat-
egories of palatal, dental and bilabial consonants in Figure
3. The HMM-Viterbi method shows the large error at the
bilabial consonant category of incorrectly decoded frames.
It is known that the bilabial consonants /p//b//m/ are
quite sensitive for audience. For these phonemes, the er-
rors of the HMM-EM-3 method is reduced by 26% com-
pared to errors of the HMM-Viterbi method at incorrectly
decoded frames.

An effect of the HMM-EM method is illustrated at Figure
4 and Figure 5. The figures show a test Japanese word
/kuchibiru/. The horizontal axis means the number of
frames corresponding to time. The vertical axis means
visual parameters. The solid lines on the figures are the
synthesized visual parameters, and the dotted lines are vi-
sual parameters by the original recorded human movement.
The two vertical lines show the beginning and ending times
of the utterance. The synthesized height visual parameter
of the HMM-Viterbi method does not form the valley of
the lip closure of /b/ because of the incorrectly Viterbi
alignment at Figure 4. However the HMM-EM-3 method
of Figure 5 shows the correct articulation.

5. CONCLUSION

This paper proposes a new method to re-estimate visual
parameters from acoustic speech signals using audio-visual
HMMs based on the EM algorithm. In the experiment,
the HMM-EM method shows error reduction compared to
the HMM-Viterbi method at incorrectly decoded bilabial

consonants.

On the other hand in the correctly decoded frames by the
HMM-Viterbi method, the HMM-EM method blurred the
correct articulation of the HMM-Viterbi method. The in-
fluence of errors due to blur needs to be evaluated by the
subjective test of the visualized lip images. In future works,
the re-estimation formula with covariances between audio
and visual parameters will be implemented. The correla-
tion between audio and visual parameters will give more
natural synthetic visual parameters for an input speech.
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Figure 4: Visual parameters synthesized by
HMM-Viterbi method
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Figure 5: Visual parameters synthesized
by HMM-EM-3 method
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