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ABSTRACT

In the speaker recognition, when the cepstral coefficients
are calculated from the LPC analysis parameters, the LPC
residual and pitch are usually ignored. This paper de-
scribes an approach to integrate the pitch and LPC-residual
with the LPC-cepstrum in a Gaussian Mixture Model based
speaker recognition system. The pitch and LPC-residual
are represented as a logarithm of the F0 and as a MFCC
vector respectively. The second task of this research is to
verify whether the correlation between the different infor-
mation sources is useful for the speaker recognition task.
The results showed that adding the pitch gives significant
improvement only when the correlation between the pitch
and cepstral coefficients is used. Adding only LPC-residual
also gives significant improvement, but using the correla-
tion with the cepstral coefficients does not have big effect.
The best achieved results are 98.5% speaker identification
rate and 0.21% speaker verification equal error rate com-
pared to 97.0% and 1.07% of the baseline system, respec-
tively.

1. INTRODUCTION

In the last decade, the research has been focused on us-
ing the spectral information, especially the cepstral co-
efficients, for speaker recognition. There have been sev-
eral studies, for example [1, 2, 3], trying to use both the
pitch and the cepstral coefficients. The main problem in
such combination, in the case of text-independent speaker
recognition, is that there are voiced and unvoiced parts in
speech. The approach taken in [1]; where VQ codebook is
used as a model, is to train two separate models for each
speaker from the voiced and unvoiced parts of the training
data respectively. In [3] the pitch is modeled separately us-
ing mixture model which takes into account the probability
of pitch extraction errors - pitch halving and doubling. The
relative entropy between pitch distributions of the model
and the test utterance is used as a pitch score which is
further combined with scores obtained from conventional
Gaussian Mixture Model (GMM) cepstral system.

In our speaker recognition system, which is based on GMM,
we combine the the cepstral feature vector with the pitch
parameter at the frame level. This prompted as to use
two models per speaker (as in [1]) for voiced and unvoiced
speech segments respectively. Another issue of interest
which to our knowledge has not been addressed yet, is
whether there is a correlation between the pitch and cep-
stral coefficients and whether it is useful for the speaker
recognition task.

A by-product of the LPC analysis is the prediction error
signal. If the speech could be perfectly modeled by the
all-pole model, the residual signal would be very small.
However, this model is not suitable for nasal and fricative
sounds. Thus, the prediction error essentially carries all
information that has not been captured by the LPC co-
efficients. In [4, 5] the LPC residual is transformed into
cepstral coefficients using FFT - much like MFCC for the
speech signal. In [6] the LPC residual is represented in
terms of power difference spectrum in subband (PDSS)
which is derived also from the FFT spectrum. In [4, 6]
the LPC cepstral coefficients and the representation of the
LPC residual are treated as a separate feature streams and
the scores of the respective models are linearly combined.
In contrast, in [5] they are combined at the feature vec-
tor level, furthermore, only voiced segments of the speech
signal are used for feature extraction.

In our speaker recognition system, the LPC residual is
transformed into cepstral coefficients obtained using mel
frequency filter bank analysis. We have tried both ap-
proaches to combine the conventional LPC cepstral coeffi-
cients with LPC residual MFCC| i.e. by treating them as
separate feature streams and by forming one feature vector
from both types of cepstral coefficients. In all the cases we
use a GMM for the modelization. Finally, we have exper-
imented with the combination of both the pitch and LPC
residual by adding the pitch parameter to the augmented
cepstral vector and again using two models (voiced and
unvoiced) per speaker.

As a baseline system for comparisons we used a conven-
tionally trained GMM wusing only LPC derived cepstral
coefficients. Previously, we have developed and experi-
mented with the frame level likelihood normalization tech-
nique [7, 8], which had a significant effect on our baseline
system. Here, we also applied this technique and achieved
further improvements of the system performance.

2. FEATURE PARAMETERS
2.1. LPC Residual Cepstrum

The prediction residual signal, according to the LPC model,
is found from:

e(n)=s(n) = 5(n)=s(n) = > ars(n—k) (1)

where aj are the LPC prediction coefficients, p is the pre-
diction order and s(n) are the samples of the speech signal.
It is evident that e(n) might contain information which has



not been captured by the LPC coefficients and which can
be useful for the speaker recognition task.

In practice, the LPC residual is obtained by inverse filter-
ing of the speech signal using its autoregressive parameters
computed by the standard LPC analysis as filter coeffi-
cients. Obtained LPC residual signal is then transformed
into cepstral coefficients using the standard mel frequency
filter-bank analysis technique. In more detail, this method
consists of the following steps: a) Framing the LPC resid-
ual with the same rate and length as the original speech
signal. b) Applying a Hamming window. c¢) Obtaining
the magnitude spectrum with FFT. d) Forming M filter
banks in the mel scale. €) Computing the log filter-bank
amplitudes. f) Calculating d cepstral coefficients from the
filter-bank amplitudes using DCT.

2.2. Pitch Parameter

The pitch frequency is estimated using an algorithm based
on the normalized short-time autocorrelation function which
does not require the selection of the frame length [9]. For
the minimization of the pitch extraction errors, such as
pitch doubling or pitch halving, a post-processing is ap-
plied as proposed in [10].

Pitch frequency values are extracted from the digitized
speech signal at intervals, corresponding to the cepstral
frames time rate. In other words, the extraction of the
pitch and cepstral coefficients is synchronized such that for
each cepstral vector there exists a pitch value. The pitch
value is set to zero for the unvoiced parts of the speech
signal. This scheme is particularly useful when deciding
whether the current cepstral vector represents a voiced or
unvoiced speech interval.

2.3. Combined Feature Vectors

In our speaker recognition system, when using the pitch
information, the LPC derived cepstral vector, denoted by
CEP, is augmented with the logarithm of the pitch fre-
quency. For the unvoiced parts of speech where the pitch
value is zero, cepstral vectors are kept unchanged. Note
that the two types of feature vectors have different dimen-
sion: d + 1 for voiced and d for unvoiced vectors.

When using the LPC residual cepstral coefficients, denoted
by R-CEP, we investigated two approaches. The first treats
the R-CEP features as a separate stream and, thus, they
are modeled by a separate GMM. The second approach
is to form one long feature vector consisting of both CEP
and R-CEP coefficients. Adding the pitch parameter, in
the latter case, again leads to a split of the feature vectors
into voiced and unvoiced sets.

3. DECISION PROCEDURE
3.1. Using pitch

In our system, each speaker is represented by two GMMs
trained on the corresponding collections of the unvoiced
and voiced frames.

After the front-end analysis, the training feature vectors
are divided into two subsets, voiced X, and unvoiced X,
by checking their dimension.
GMM is trained using the conventional Maximum Likeli-
hood Estimation (MLE). Using a full covariance matrix,
we can model not only the pitch itself, but its correlation
with the cepstral coefficients as well.

Then from each subset a

A given test utterance is first divided into voiced and un-
voiced parts in the same manner as the training data.
Then, the log-likelihood of each part with respect to the
corresponding GMM is calculated. However, the whole
test utterance score cannot be obtained by a simple addi-
tion of the two log-likelihoods. This is because the voiced
and unvoiced vectors have different dimension and, there-
fore, their likelihoods will have different dynamic range.
To overcome this problem, we have chosen to take a linear
combination of the likelihoods as follows:

L(X) = aLl(Xuv|Auw) + (1 — o) L(Xo|Ay) (2)

where X, and X, denote the unvoiced and voiced subsets
of the feature vectors respectively and then the L(X) is
used for identification or verification decision.

3.2. Using LPC residual

As mentioned in Section 2.3., the LPC cepstral and LPC
residual features are combined in two ways. When the
R-CEP coefficients are treated as a separate stream, each
speaker 1s modeled by two GMMs - one for CEP and one
for R-CEP features.
obtained by a linear combination of the two models scores
in the same way as Eq.(2).

The utterance score in this case is

When CEP and R-CEP are combined in one feature vector,
one GMM per speaker is used and the speaker recognition
system structure does not differ from the conventional one.
If there is any correlation between CEP and R-CEP coeffi-
cients, it can be captured and used when the model’s prob-
ability density functions are with full covariance matrices
in the same manner as the pitch/CEP correlation.

Adding the pitch parameter to the combined CEP/R-CEP
vector allows to use both the LPC residual and pitch in the
same time. The speaker recognition system in this case is
similar to that explained in Section 3.1..

4. EXPERIMENTS
4.1. Database

For the evaluation experiments we used the NTT database
for speaker recognition which consists of recordings of 35
speakers (22 males and 13 females) collected in 5 sessions
over 10 months in a sound proof room. For training the
models, 10 sentences for each speaker from one session were
used. Five other sentences/session from the other four ses-
sions uttered at normal, fast and slow speeds were used as
test data. 10 mel-cepstrum coefficients (CEP) were calcu-
lated by the 14th order LPC analysis at every 8 ms with
a window of 21.33 ms. Each session’s cepstral data were

also mean normalized (CMN). Regressive (ACEP) coef-



ficients were calculated separately for each of the voiced
and unvoiced data streams giving in the same time Apitch
parameters.

The LPC residual was transformed into 10 MFCC (R-
CEP) using 24 mel-scaled filter banks. When the R-CEP
coefficients were used separately, AR-CEP coefficients were
calculated in the same manner as ACEP coefficients. When
combined with the CEP coefficients in one vector, the

ACEP and AR-CEP are also combined.
4.2. Results using pitch

In order to assess the effect of using the correlation be-
tween the pitch and the cepstral coefficients, we made ad-
ditional experiments, where the pitch was modeled as an
independent feature stream and this correlation was not
used. This was done by making the voiced GMM’s co-
variance matrices block-diagonal. Table 1 compares the

Table 1: Speaker recognition rates using pitch

CEP CEP + pitch
Mod- | Using ML test
del A's ML W/o | With | Cohort | WMR
type test Cor. Cor. test test
Identification rate (%)
4 no 92.3 93.9 95.3 95.1 96.0
mix. yes 94.1 93.9 95.3 94.4 96.6
8 no 96.1 96.3 971 96.9 Q7.7
mix. yes 97.0 96.8 97.4 97.0 97.6
Verification equal error rate (%)
4 no 2.50 2.46 1.66 1.33 0.84
mix. yes 1.64 2.28 1.45 1.11 0.64
8 no 1.66 1.48 1.21 0.96 0.50
mix. yes 1.18 0.98 0.89 0.80 0.41

recognition rates among the baseline (“CEP”), the inde-
pendent pitch modeling case (“W/o Cor.”) and the case
when the correlation between the pitch and the cepstral
coeflicients is used (“With Cor.”). In the columns, “ML
test” stands for the Maximum Likelihood test. These re-
sults show, that the pitch/cepstral correlation is effective
and that the gain in the performance is bigger than the
case when this correlation is not used.

The columns “Cohort test” and “WMR test” of the Table
1 show the recognition rates when the frame level like-
lihood normalization technique is applied to the system
using pitch/cepstral correlation [8]. The term “Cohort”
means that the background speakers for the frame level
likelihood normalization are chosen to be the most acous-
tically close speakers to the target speaker. It can be seen
that this technique works well improving further the per-
formance.

For the fast and slow speed test utterances, even bigger
improvement was achieved. The baseline fast speed test
best result of 94.0% identification rate was improved to
97.4% with the WMR test. The corresponding rates for
the slow speed test are 93.0%, and 96.5%. The verification
EER also decreased from 1.43% to 0.64% (with WMR) and
from 2.06% to 0.87% (with WMR) for the fast and slow
speed tests, respectively.

4.3. Results using LPC residual

In the first evaluation experiments with LPC residual, it
was modeled as a separate feature stream. Each speaker
was modeled by a pair of GMMs corresponding to CEP
and R-CEP features. The overall utterance score was ob-
tained by a linear combination of non-normalized scores
from the two models. In the next experiments, the CEP

Table 2: Speaker identification rates using CEP and R-
CEP features. Maximum Likelihood (ML) test

Mod. Using | Combined CEP and R-CEP CEP
type A's Comb. [ 20 dim. | 14 dim. | 10 dim.
4 mix. no 96.0 96.9 96.0 92.3
full yes 96.6 96.4 96.9 94.1
8 mix. no 97.0 96.3 96.4 96.4
full yes 97.0 96.0 97.4 97.0
32 mix. no 95.9 95.6 96.6 94.4
diag. yes 97.7 96.0 97.7 95.9
64 mix. no 96.4 96.1 98.0 94.1
diag. yes 96.1 97.3 98.1 95.9

and R-CEP vectors were combined into one 20 dimensional
feature vector. The results of these experiments are sum-
marized in Table 2 in the column “20 dim.”. The poor
performance of the 8 mixture, full covariance matrix GMM
suggests that probably the training data became insuffi-
cient when the model dimension became doubled. Thus,
we decided to reduce the R-CEP vectors dimension to 4
using Karuhnen-Loewe (K-L) transformation.

The transformed R-CEP vectors were combined with the
10 dimension CEP vectors resulting in a 14 dimension fea-
ture vectors. The identification results using this new vec-
tor are shown in the “14 dim” column of the Table 2. The
biggest improvement in this case is seen for the models
with diagonal covariances. It is not surprising, because
the K-L transformation also diagonalises the covariance
matrices. Comparing the performance of the all CEP +
R-CEP cases with the baseline, it is clear that using the
R-CEP features gives significant improvement up to 4%,
which shows that the LPC-residual signal carries speaker
specific information not presented in the standard CEP
vectors.

Investigating the correlation between CEP and R-CEP co-
efficients, we ran experiments using models with block-
diagonal covariance matrix (4 mixture GMM) and 20 di-
mension feature vector. Obtained results were 96.3% with-
out the A’s and 96.1% when they were used. The difference
from the case of full covariance matrix (Table 2, column
“20 dim.”) is small which confirms the fact that the CEP
and R-CEP coefficients hold different information and are
almost uncorrelated.

Table 3 shows the speaker identification rates as well as
speaker verification equal error rates when the Cohort and
WMR tests were applied to both the baseline (CEP) and
CEP 4+ R-CEP (CEP+R) cases. Using the Cohort test
did not improve the identification performance of the CEP
+ R-CEP system and the WMR test was better only in
the half of the cases. However, the verification error rates



were improved in both the Cohort and WMR test giving
the smallest EER of 0.21%.

Significant improvement was obtained for the fast and slow
speed test. Thus, the best ML test result for the fast speed
is 97.4% compared to the 94.0% of the baseline. The WMR
test further improved the result to 98.1% which is very
close to the normal speed test results. For the slow speed
test, we achieved 96.4% (with WMR) from the baseline’s
93.0%. The best verification EERs (with WMR) are 0.39%
and 0.69% for the fast and slow speeds, respectively.

Table 3: Speaker recognition rates using 14 dimensional

CEP + R-CEP feature vector.

Mod. Using Cohort test WMR test
type A’s CEP4+R | CEP | CEP+R | CEP
Identification rate (%)
4 mix. no 95.3 92.4 96.1 92.4
full yes 96.7 94.8 95.7 95.2
8 mix. no 96.3 96.2 97.3 96.6
full yes 97.4 97.0 97.7 97.3
32 mix. no 96.0 95.2 97.0 95.0
diag. yes 97.4 96.3 97.6 95.3
64 mix. no 97.3 94.9 97.9 96.2
diag. yes 97.9 95.9 97.7 95.8
Verification equal error rate (%)
4 mix. no 1.48 2.14 1.04 1.31
full yes 0.90 1.33 0.90 0.84
8 mix. no 0.66 1.38 0.42 0.66
full yes 0.58 0.96 0.45 0.52
32 mix. no 0.81 1.29 0.69 0.91
diag. yes 0.52 1.00 0.48 0.95
64 mix. no 0.57 1.20 0.39 0.72
diag. yes 0.29 0.86 0.21 0.60

4.4. Results using both pitch and LPC
residual

In these experiments, we added the pith parameter to the
best performing CEP + R-CEP 14 dimension vector, thus
increasing the dimension of the voiced vectors to 15. The
experimental set up was the same as explained in Section
4.2.. Table 4 presents the speaker recognition results us-
ing ML, Cohort and WMR tests. Comparing the results
from Table 4 with those from Table 3, we can see that
including the pith parameter further improves the identi-
fication rate of all the tests. The best results is 98.5% of
the WMR test. However, no improvement was observed in
the speaker verification experiments.

5. CONCLUSIONS

The experimental results showed that using the pitch in-
formation is most effective when the correlation between
the pitch and the cepstral coefficients is used. The com-
bination of the cepstral and LPC residual features is also
effective without big difference among the combination ap-
proaches. Significant improvement was also obtained for
the fast and slow utterances. Including additionally the
pitch parameter gives further improvements, however, at
the cost of increased system complexity. When the frame

Table 4: Speaker recognition rates using CEP and both
pitch and R-CEP features.

Mod. Using | ML | Cohort | WMR
type A's Test Test Test
Identification rate (%)
4 mix. no 96.3 96.2 96.4
full yes 95.3 96.2 96.3
8 mix. no 97.5 97.6 97.6
full yes 97.3 97.3 97.9
32 mix. no 98.0 97.9 98.3
diag. yes 96.8 96.9 98.3
64 mix. no 97.9 98.0 98.5
diag. yes 96.7 97.9 98.0
Verification equal error rate (%)
4 mix. no 2.41 2.20 1.65
full yes 1.45 1.19 1.29
8 mix. no 0.90 0.83 0.46
full yes 0.38 0.39 0.50
32 mix. no 0.98 0.78 0.38
diag. yes 0.48 047 0.29
64 mix. no 0.74 0.62 0.44
diag. yes 0.38 0.34 0.28

level likelihood normalization technique was applied, in av-
erage, further performance improvements were achieved.
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