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ABSTRACT 

Hu~mm perceptual cxperimcnts are described that present listen- 

ers with segmented stop consonant speech stimuli in noise. The 

selection of short duration speech scgmcnts is based on a local 

measure of the signal-to-noise ratio calculated over Ims win- 

dows. The aim is to create stimuli with known fluctuations 

occurring bctwcen a speech and noise sample to assess whether 

the presence of short duration “gaps” in the noise product 

favourable and unfavourable signal regions that influence identi- 

fication. Perceptual results arc reported that suggest human lis- 

teners make better use of signals that comprise only 01’ positive, 

local signal-to-noise ratio segments. Such regions are assumed to 

be more favourdble I’or stimuli identification. Presenlation of 

stimuli containing only ncgativc signal-to-noise ratio regions 

does not appear to contribute as much. A model that is based on 

the accumulation of short duration spectral segments is presented 

that produces a similar set 01‘ identilication functions For the 

same test stimuli. 

1. INTRODUCTION 

When speech and noise arc additiveI> combined. a single global 

measure of the signal-to-noise ratio (SNR) is generally used to 

define the overall energy relationship between the two signals. 

For example. vowels contain more energy compared with 

unvoiced stop consonants and a global SNR does not reflect how 

low cncrgy speech segments are more adversely atyected 

compared with high energy voiced sounds. The question under 

consideration is how short duration. time-varying fluctuations in 

the SNR all’ect identification perfonnancc. Only stop consonants 

are considcrcd in this stud!,. 

2. BACKGROUND 

Miller and Licklider (3) considcrcd the effect of fluctuating 

background noise on the perception of continuous speech 

material by measuring human identification performance in the 

prcscncc of regularly and randomly interrupted noise stimuli. 

Various SNK (-+!I to -I 8dR) and interruption ralcs wcrc 

considered from O.lH7 through to I Okl IL Identification 

performance with high interruption rates was considered similar 

to continuous noise and the relationship betaccn the interruption 

rate and the syllable duration was bclicvcd to be a contributing 

factor. 

Studies by Howard-Jones et al. (5. 4) have considcrcd the ett‘ect 

of interruptions in both time and frequent) using noise lvith a 

time-frequency distribution that looks like a checkerboard. The\, 

have reported that fluctuations in both lime and frequency do 

produce statistically din‘crent identification results. Their 

proposal suggests that humans can make use of time-frequcnc? 

“gaps” in the noise. I loward-Jones cxpcriments have onI!, 

considcrcd interaction using regular time interruptions of 101 ty. 

The concept of time-varying fluctuations due to the phase 01‘ a 

noise signal has been suggested in (7) and investigated in recent 

perceptual studies by Summers and Leek (8). Thcsc studies 

suggest that over short periods. the masking effectiveness 01 

noise varies. This supports the notion that short gaps in the noise 

contribute to improved performance. Summers et al. (8) ha\,e 

shown using an auditory model that variations in the phase of 

signals product diKerent basilar membrane responses. 

3. SIGNAL SEGMENTATION 

In this series of cxpcriments (IO) six initial position stop 

consonants /b.d,g.k.p.ti are considered in the prescncc of non- 

stationary otlicc noise samples (6). Only the first 30ms from the 

burst release of the stop consonants is used in the speech 

malcrial (Figure I). 

Three types of signals are generated for a given global SNR. 

“speech plus noise” (S+N). “speech above plus noise” (A+K) 

and “speech below plus noise” (B+N). The first signal (S+Iv) is 

the typical cast ol‘ combining the speech signal with noise at 21 

spccificd SNR. The other two combined signals require 

measurcmcnt of the local RMS value for each signal (Figure 2) 

calculation of the local SNR (Figure 3a) using non-overlapping 

Ims windows at the sdmc gain scaling factor used to generate 



Figure 1: (a) Speech signal and (h) office noise signal. Figure 3: (a) Local signal-to-noise ratio. (b) Above mask 

Figure 2: KMS value for the signal and noise measured over 

I ins intervals. 

S+N. A mask is created based on whether the local SNR is 

positive or strictly ncgativc (Figure 3h). The mask is used lo 

extract regions ofthe speech signal with positive SNR (Figure 4) 

\vhich ars subsequently combined with a continuous noise 

sample. The third signal (B+N) is generdtcd in an analogous 

manner to the A+N signal cxccpt that the complement of the 

mask is used to select the speech regions. l!nlike (3), the speech 

signal is segmented rather than the noise and much shorter 

durations arc considered compared with (5). 

4. PERCEPTUAL EXPERIMENTS 

4.1. Method 

A stop consonant speech database consisting of two malt and 

two female speakers was prepared by excising the first 30ms of 

initial position speech tokens /b,d.g.k.p.t! from continuous 

Figure 4: Above signal prior to being mixed with noise. 

speech sentences in the same vowel and word contexts. All 

speakers had Australian English accents. 

Clean speech tokens wcrc combined with three otlicc noise 

samples using three mixing conditions (S+N. A+N and B+N) at 

four SNKs +2, 0. -2 and -4dB. Two blocks each containing the 

complete set of stimuli were presented using different 

randomisation patterns. 

The speech material was prcscntcd lo a group of 20 listeners 

consisting of approximately equal numbers of malt and female 

sub,jects with normal hearing. Experiments wcrc conducted in a 

sound treated room \rith audio presented through a Madsen 

audiometer distributed lo ‘fDH-39 headphones. Prcscntation 

levels were 70dls SPL. Subjects wcrc prcscntcd with an 

uttcrancc and then entered their response using a touch screen 

button. Voiced and unvoiced experiments were conducted 

separately and listeners only selected one from three available 

choices. 

4.2. Results 

Identification results for both voiced and unvoiced experiments 

arc shown in Figure 5. ‘l‘hc S+N case produces the best overall 
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Figure 5: Identification score for identifying the stop consonants 

(both voiced and unvoiced) ror ditl’ercnt signal mixing 

conditions and signal-to-noise ratios. 

pcrrormance and represents the cast for both continuous noise 

and continuous speech. In keeping with expectations. as the 

global SNR is decreased. identification performance also 

decreases. For the mixing condition A+N. where only positive 

SNR regions are included. the identification score lies slightI> 

below the S+N case at +2 and OdR global SNR. The difYercncc 

bet\reen S+N and A+Y hecomcs greater at negative global 

SNRs. This arises from the relationship bet\vecn the global SNR 

and the number of speech regions included in the signal. As the 

global SNR becomes more negative. the total number of local 

positive SNR regions decreases. This can he visualised b\ 

considering Figure 3a. If the dotted line is considered as the 

threshold. then at negative SNRs the local SNR L‘unction (solid 

line) shifts downward and the number of’ regions appearing 

above the line dccrcases. At the same time. the number of 

“below” regions increases. ‘l‘his is observed in the B+N case 

(Figure 5) whcrc decreasing global SNR yields increasing 

pertbrmancc. The A+N pcrrormance falls below that of B+N at - 

4dR because the total duration or speech in the A+N signal is 

quite small. 

An interesting point to note is that at Odl3 SNR whcrc 

approximately equal durations of speech are present, the 

identification of’ the A+N condition is significantly grcatcr than 

B+N. suggesting that although partial scgmcnts of the speech 

signal are prescntcd. listeners perform better when presented 

with only those regions of positive local SNR. 

5. A TIME-FREQUENCY MODEL 
-.. 

A pattern classification model is proposed (IO. I I) that is bawd 

on the observed bchaviour of human listeners when prescntcd 

with successively longer stimuli durations using I-5ms 

increments. As the total stimuli duration incrcascs human 

pcrlormancc also increases (9. I). I’resenlation of only the short 

duration increments (<lOms) in isolation yields chance 

performance (I). One interpretation of thcsc findings is thaw 

speech perception is facilitated by the amalgamation of‘ multiple 

short duration spectral reprcscntations. 

The perceptual results of this study indicate that humans can 

make use of non-contiguous regions of’ positive local SNR more 

effectively than signal containing negative regions. The speech 

stimuli are segmented and can contain speech events with 

minimum duration 01‘ I ms or longer. This presents a challenge to 

conventional speech processing techniques since typical analysis 

window durations of IO-2Oms are unable to reveal the short 

duration events present in the signal. Fourier techniques using 

lms window arc avoided to circumvent the loss of rrcqucnc> 

resolution. 

A positive time-licquency representation (2) is used to rcprcsent 

the speech and noise signal and has been I‘ound to reprcscnt short 

duration speech cvcnts more accurately than t:ourier and Wigner 

techniques avoiding the time-frequency trade-off and both 

artclact and negative components ( IO). 

A spectral comparison is made against a set of stored clean 

templates for each Ims spectral slice derived liom the positive 

time-frequency reprcscntation. An histogram of the set of best- 

matching tokens is formed Ibr each I ms interval and integrated 

over the 30ms interval (Figure 6). ‘l’emplates arc derived from 

clean speech stimuli while test utterances arc produced b> 

combining the clean stimuli with noise. 

5.1. Results 

IIy applying the same speech stimuli used in the perceptual 

esperimcnts. the identification results produced by the model 

retain similar characteristics observed for human pcrtbrmance 

(Figure 7). The identification score dccrcascs for negative global 

SNR Ibr S+N and A+N. the A+N score dcviatcs more from S+N 

at negative SNKs indicating the decreased amount of speech. 

B+N rises as the SNR is decreased although not as much as the 

pcrccptual results and at Odl3 Sh:R the A+N condition is better 

identified compared with B+N despite containing approximatcl> 

the same durations of speech. 
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Figure 7: Identification performance produce by the model 

6. SUMMARY 

The time-varying properties of a speech and noise signal 

produce fluctuations in the local signal-to-noise ratio. 

Presentation of’ only the positive SNK regions appear lo offer 

more fwourablc conditions l‘or the identification of speech 

compared with regions of negative SNR. Using a model that 

integrates short duration (Ims) spectral information dcrivcd 

liom a positive time-frequency distribution. identification 

performance has been produced that supports the observations 

found for human listeners. The model agrees with the hypothesis 

that short duration regions of positive SNR are more beneficial 

L‘or identification. 
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