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ABSTRACT

Recognition of connected digits is an important element for
applications of speech recognition over the telephone network.
This paper describes experimental results on whole word
HMM-based speech recognition of connected digits in
Japanese. The training data comprises 756860 digits (91.17
hours) uttered by 1963 speakers, while the testing data
comprises 304212 digits (31.39 hours) uttered by 852 speakers.
The best performance was a word error rate of 0.42% for
known length strings obtained using context dependent models.
The word error rate was measured as a function of the training
data size. The result showed that at least 3302 samples per
speaker and 344 speakers are necessary and sufficient for
context independent training. Error analysis was conducted on
a fraction of the population bearing the major part of
recognition errors. The results suggested that such speakers
arise not simply from speaker characteristics but from a
combination of speaker characteristics and environmental
conditions.

1. INTRODUCTION

Recognition of connected digits is an important element for
applications of speech recognition over the telephone network,
such as voice dialing by number, PIN (personal identification
number) entry, and credit card validation.

Numerous studies have been made on the recognition of digits
in English [1-3]. In recent years successful results have been
obtained by straightforwardly applying HMM-based
techniques commonly used in large vocabulary speech
recognition. Rabiner et al. showed the effectiveness of whole
word HMM for speaker dependent and speaker independent
recognition [1]. Wilpon et al. found that incorporating first and
second order time derivatives into the acoustic feature vector
substantially improves the recognition performance [2].
Buhrke et al. applied VQ-based HMM to telephone speech [3]
along with other techniques such as mutual information
training, gender modeling, and state number optimization.
They achieved a word error rate of minimum 1.7%.

As for Japanese speech, several studies have been published
[4-7] after the pioneer studies at the time of DP [8,9]. In spite
of those studies we have not seen connected digit recognition
adopted in real world applications. We still have to improve
the recognition performance and the robustness, and then
provide a reliable evaluation of the performance in real
operating conditions.

The purpose of this paper is twofold. First, we present our best
recognition performance. Secondly, we investigate two factors
affecting the recognition performance: training data size, and a
small fraction of the population bearing a major part of
recognition errors. The latter factor is generally known as the
“sheep and goats” problem [10]. In this paper, however, we call
them low performance speakers to clarify whether the sheep or
the goats are the problem.

This paper is organized as follows. In section 2, we describe a
database of connected digit speech collected over the telephone
network. In sections 3 and 4, we describe the common
experimental set-up, viz. feature extraction and whole word
HMM’s. In section 5, we show our best recognition
performance at present. In section 6, we present the impact of
training data size on the recognition performance. In section 7,
we analyze the low performance speakers. In section 8, we
summarize the paper.

2. TELEPHONE SPEECH DATABASE

The telephone speech database used for HMM training and
speech recognition is outlined in Table 1. Each sentence for
utterance comprises four connected digits. The speakers of the
training data were assigned 100 strings in a written form from
a randomized list of numbers 0000-9999, while the speakers of
the testing data were assigned 10 strings from the same list.
The speakers were requested to pronounce digits as specified
in Table 2. Although the speakers were requested not to insert
pauses between digits as long as possible, 21% of the
utterances were found to contain pauses.

Table 1:Outline of the database for training and testing. The
duration does not include sentence initial and final pauses.

Gender Number of | Number of | Duration

Speakers | Utterances | (hours)
Training Male 1375 132383 63.50
Female 588 56832 27.67
Testing Male 428 37038 15.13
Female 424 39015 16.26

Table 2:Pronunciation of digits. /H/ means vowel elongation.

Digit Pronunciation Digit Pronunciation
0 /zero/ 5 /go/, /goH/
1 fichi/ 6 |/roku/
2 /ni/, /niH/ 7 /nana/
3 /saN/ 8 /hachi/
4 /yoN/ 9  |/kyuH/




The speakers were collected mainly from the Tokyo and Osaka
areas. Their ages were evenly spread over the range from 15 to
60 years old. There was no overlap of speakers between the
training data and the testing data.

The speakers of the training data uttered in one of the three
environments, viz. home, office, or pay phone, while the
speakers of the testing data uttered twice in two weeks in all of
the five environments, viz. home, office, PHS (personal handy
phone system), and cellular phone. The speakers were
requested not to use a cordless phone handset at home. The
average SNR of recorded speech ranged from 30 to 38 dB
depending on the environment.

The data acquisition equipment was connected to the telephone
network through an ISDN channel. Analog components
affecting the acoustic features of speech are thus limited to the
telephone terminal and the subscriber line. The speech was
digitized at 8 kHz in 8 bit p-law format.

3. FEATURE EXTRACTION

The speech was pre-emphasized with a coefficient of 0.95 and
windowed with a 32ms Hamming window at every 10ms. The
windowed speech was parameterized into a 39 component
vector consisting of 12 MFCC’s (mel-frequency cepstrum
coefficients), their first and second order time derivatives, and
first and second order time derivatives of log-energy.
Cepstrum mean normalization (henceforth CMN) was applied
for channel equalization. A white Gaussian noise less than the
quantization level was added before the windowing so that
absolutely zero frames do not affect the whole utterance
through CMN especially for the lower order MFCC’s.

4. WHOLE WORD MODELING

Context independent (henceforth CI) HMM’s and context
dependent (CD) HMM'’s were trained using a standard Baum-
Welch maximum likelihood estimation. Male speech and
female speech were modeled separately. All of the training
data shown in Table 1 was used for the modeling. All training
and testing were conducted using the HTK HMM toolkit [11].

Table 3 shows the number of states in the case of CI models,
which were obtained as a result of optimizing the sentence
error rate using the hill-climbing method. The initial values
were determined by assigning 3 states to a phoneme. The pause
model was not optimized. The states in an HMM were
organized in a left-to-right network without skip transitions.
The output distribution of each state is a mixture of 15 (for
digits) or 60 (for pause) Gaussian distributions. The total
number of states and Gaussian distributions were 127 and 1950,
respectively.

In the case of CD models, preceding and succeeding
environments were grouped into predefined 6 and 5 classes,

Table 3: Number of HMM ’states (lower row) for each digit
(upper row).
0 (1|2 ([3]14[5|6 ]| 78] 9 |Pause
6] 9 141111 |13])16[14]12] 10 1

respectively. The middle states, viz. the states except for the
initial two states and the final two states, were shared among
the models for the same digit. Consequently 1287 free states
consisting of 19350 Gaussian distributions were used in total.
The transition matrix was shared among the models for the
same digit.

5. RECOGNITION RESULTS

The trained models were evaluated on the testing data shown in
Table 1. Only the speech from the first session was used.
Viterbi decoding was executed without a beam search. The
grammar network permitted an arbitrary insertion of pauses
into sentence initial, word medial, and sentence final positions.
When a speech of unknown gender was recognized, the
network of male HMM’s and the network of female HMM’s
were searched in parallel.

The recognition results for CI models and CD models are
shown in Tables 4 and 5, respectively. The word error rate for a
known length string is defined as 100(D+S)/N, where D is the
number of deletions, S is the number of substitutions, and N is
the total number of digits. On the other hand, the word error
rate for an unknown length string is defined as 100(D+S+I)/N,
where I designates insertion errors. The difference between the
scores for known length strings and for unknown length strings
mainly arose from insertion errors.

Table 4: Word error rate for CI models. KL: known length,
UL: unknown length. The cellular phone environment is
excluded from the mean.

Gender Environments
Home | Office | Pay | PHS | Cel. [ Mean
Male KL| 047 033 1069|058 |098 | 052
UL| 264 | 356 |323]|245|4.50| 2.99
Female KL| 0.38 027 | 0.85]055| 121 051
UL| 2.23 339 | 286|224 | 443 | 2.69
Unknown KL| 043 0.32 10781052 | 1.10 | 0.51
UL| 2.41 331 |294 (227 |436| 2.74
Table 5: Word error rate for CD models.
Gender Environments
Home |Office| Pay | PHS | Cel. |Mean
Male KL| 036 [ 026 | 059 | 047 | 0.79 | 042
UL| 254 | 353 | 326 | 223 | 454 | 291
Female KL| 033 | 020 | 0.84 | 036 | 1.15 | 043
UL| 229 | 375 | 328 | 2.18 | 452 | 2.89

6. TRAINING DATA SIZE AND
RECOGNITION PERFORMANCE

The training data is the most crucial factor to the recognition
performance, while building a speech database is an expensive
task. For this reason it is interesting to know how much data is
necessary. To investigate the relationship between the training
data size and the recognition performance, training with



reduced data was conducted. The number of speakers and the
number of utterances per speaker were both reduced to 1/2".
Since the data from female speakers is 1/3 that from the male
speakers, the experiment was conducted only on the male
speakers.

Figure 1 shows the result for CI models. We can see in this
figure that the error rate improves slowly when it falls below
0.6%. The boundary of the region where the error rate is
smaller than 0.6 indicates that the number of speakers tends to
have a greater effect on the error rate than the number of
utterances per speaker, which coincides with Shirotsuka’s
report [4] although the error rates are substantially better in our
case. If we regard the error rate of 0.6% as the minimal error
rate achieved by all the available training data, the necessary
conditions for the best error rate are as follows:

1. The number of speakers is greater than 344.

2. The number of utterances is greater than 8256. Namely,
the number of samples per digit is greater than 3302.

Figure 2 shows the result for CD models. In this case the
improvement of the error rate becomes smaller when it is
below 0.45%. If we regard the error rate of 0.45% as the
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Figure 1: Relationship between training data size and
word error rate (%) for CI models.
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Figure 2: Relationship between training data size and word
error rate (%) for CD models.

minimal score, the necessary condition for the best score is as
follows:

* The number of utterances is greater than 16512.
Namely, the number of samples per digit is greater than
6605.

No apparent requirement in terms of the number of speakers is
observed in Figure 2. Since 30 HMM’s correspond to a digit in
the case of CD modeling, the number of samples necessary for
an HMM is 220.

7. ANALYSIS OF LOW PERFORMANCE
SPEAKERS

It is well known that recognition errors are not distributed
equally over the population, but tend to be concentrated in a
fraction of the population [10].

The first question is how many low performance speakers exist.
Figure 3 shows average word errors rate for 10% fractions of
the speakers. The speakers are sorted by word error rate. The
HMM’s used were CI models trained with the male speech.
The testing data uttered in the first session was used for the
recognition. Figure 3 indicates that the recognition errors are
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Figure 3: Word error rates for 10% fractions of the speakers.
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of the number of speakers (96 samples/speaker).



concentrated in the worst half, and especially in the worst 10%
of the population. The worst 10% of the population accounts
for 57% of all the recognition errors.

The second question is what we can do to decrease the number
of low performance speakers. Is it possible to decrease it if we
increase the training data size? Figure 4 shows the
improvement ratio of word error rate for CI models as a
function of the number of speakers. The improvement ratio is
defined as an error rate normalized by the value for 85
speakers. This figure indicates that increasing the training data
size is effective as long as the number of speakers is less than
688 (for the best 90% speakers) or 344 (for the worst 10%
speakers). Although the improvement ratio for the worst 10%
speakers further decreases, the improvement is trivial. It is also
noteworthy that the improvement for the worst 10% speakers is
slower than that for the best 90% speakers. The result obtained
here suggests that augmenting the training data is an inefficient
means for decreasing the number of low performance speakers.

The third question is whether or not the recognition errors of
the low performance speakers are caused only by speaker
characteristics. To answer this question, the recognition errors

of the 42 low performance speakers were analyzed individually.

It was found that 41 out of the 42 speakers did not have a
recognition error in at least one of the four environments. This
result suggests that the reason for the low performance
speakers is a complex of speaker -characteristics and
environmental conditions including stochastic factors such as
ambient noise.

8. SUMMARY

In this paper we have presented experimental results on
recognizing connected digit speech in Japanese spoken over
the telephone network. The standard methods were used for
feature parameterization and modeling digits. The acoustic
feature vector comprised of 12" order MFC(’s, their first and
second time derivatives, and the first and second time
derivatives of log-energy. Digits were modeled by whole word
HMM’s with continuous output distribution. The training data
comprised 756860 digits (91.17 hours) uttered by 1963
speakers, while the testing data comprised 304212 digits (31.39
hours) uttered by 852 speakers.

The word error was measured as a function of the training data
size. The results showed that at least 3302 samples per speaker
and 344 speakers are necessary for the CI modeling, while
6605 samples were necessary for the CD modeling. In other
words, a CI HMM requires 3302 samples, while a CD HMM
requires 220 samples. This discrepancy should be studied in
future work.

Analysis was conducted on a fraction of the population bearing
the major part of recognition errors. The worst 10% fraction
was found to account for 57% of recognition errors. The
experiment on training data size and recognition performance
suggested that the number of these low performance speakers
cannot be decreased by augmenting the training data. It was
also found that speaker characteristics create low performance
speakers in combination with environmental conditions. The

mechanism of how they combine with each other will be
studied in future work.
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