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ABSTRACT

A stochastic approach to modelling speech production and per-
ception is discussed, based on It6 calculus. Speech is modelled
by a system of non-linear stochastic differential equations evolv-
ing on a finite-dimensional state space, representing a partially-
observed Markov process. The optimal non-linear filtering equa-
tions for the model are stated, and shown to exhibit a predictor-
corrector structure, which mimics the structure of the original
system. This is used to suggest a possible justification for the
hypothesis that speakers and listeners make use of an “internal
model” in producing and perceiving speech, and leads to a useful
statistical framework for articulatory speech recognition.

1. INTRODUCTION

Traditional models for speech recognition are based on represent-
ing phonological sequences and acoustic feature trajectories by
simple forms of hidden Markov process, with various patterns of
statistical dependency introduced between a hidden discrete state
space and an observed continuous measurement space.

A common criticism of such models is that there is little resem-
blance between the underlying model structure and the physical
processes involved in producing real speech. Consequently, it has
often been proposed that the introduction of true physical models
of speech production might provide a useful means of constrain-
ing speech recognition, a more robust parameterisation of speech,
and better possibilities for interpreting recognition results.

Conversely, traditional models of speech production typically at-
tempt to describe articulatory and acoustic data by proposing de-
terministic relationships between trajectories of abstract control
variables and trajectories of state variables representing the phys-
ical state of the vocal tract and auditory system.

These models often succeed in generating realistic state trajec-
tories from a direct statement of basic physical principles, but
cannot reproduce the statistical patterns of variability observed in
real measurement data. Previous papers have suggested that this
deficiency could be addressed if speech production models were
represented in a statistical framework [1] [2].

Common to both speech production and speech recognition is
the problem of describing how speakers systematically vary their
control strategies in different contexts, and explaining how lis-
teners succeed in recovering linguistic information from speech,

where the consequences of this variability are apparent.

Many theories of speech production and perception claim that
speakers and listeners possess considerable knowledge of the way
their vocal tracts behave, and actively employ an “internal model”
of articulatory behaviour to regulate and interpret articulatory-
acoustic variability in different environments. Despite the appear-
ance of numerous proposals of this type, the arguments justifying
the hypothesis remain largely heuristic, and no quantitative or fal-
sifiable mathematical model has ever been formulated or tested.

The aim of this paper is to demonstrate that speech production
and perception can be modelled within a very general statisti-
cal framework, using stochastic calculus, and to show that pro-
cedures for speech synthesis and recognition then follow natu-
rally from classical results in the theory of non-linear filtering.
Prior knowledge of articulatory behaviour is assumed to define a
probability measure on a function space of physical state trajec-
tories; speech production and perception then involve recursive
construction of a conditional probability measure on the same
state space by integrating partial sensory measurement data. The
contribution of the paper lies in explaining that the concept of an
“internal model” is directly reflected in the structure of the op-
timal filter, as provided by the two main theorems in this field,
which have an intuitive and appealing interpretation for speech.

The paper assumes a basic familiarity with stochastic calculus,
accounts of which may be found in the references provided [3]
[4]. The non-linear filtering results stated in the paper are evi-
dently not original, and have been adapted from [4] [5] [6].

2. HIDDEN MARKOYV PROCESSES

Before abstract modelling issues can be addressed, a general
mathematical representation is needed that does not overly rely
on the details of any specific model. Here the essential prob-
lem lies in linking statistical properties of observed measurement
data to physical laws governing underlying state trajectories, and
a stochastic framework is therefore appropriate.

Assume a complete underlying probability space (2, F,P)
throughout. Let X = {X; : ¢ € R4} be a stochastic process
representing the physical state of the vocal tract, taking values in
a state space (Sx,B(Sx)), andletY = {Y; : t € Ry} bea
stochastic process representing partial measurements of the state,
taking values in a state space (Sy, B(Sy)). Define F* = {F¥ :
t € Ry} and F¥ = {F : t € Ry} to be the right-continuous



filtrations generated by X and Y respectively.

Although the evolution of the state of any physical system in-
volved in speech production must usually be modelled by partial
differential equations defined on a function space of infinite di-
mension, most of the important phenomena in speech arise from
vibratory systems whose response can be represented by localized
eigenmode expansions. By including only the dominant eigen-
modes, or by making use of standard numerical simulation tech-
niques, adequate finite-dimensional representations of the under-
lying physics can be constructed, and little generality is lost by
restricting the model structure to a system of non-linear differ-
ential equations evolving on a finite-dimensional state space; Sx
and Sy can therefore be assumed to be Euclidean vector spaces.

Furthermore, it is sensible to assume that the physical system
modelled by the state process is causal, and therefore that the
future of the system is independent of its past, given the present
state. In a statistical framework, this immediately implies that the
state process X must be a Markov process, and if it is assumed
that only the measurement process Y can be observed, then X
and Y together define a general continuous-time hidden Markov
model. Under certain technical conditions, it is always possible
to represent X and Y as solutions of random integral equations,

X;: = Xo +/tg(Xs,s)ds+/tv(X3,s)dV3, e))
. .
Y; = Yo+/0 h(Xs,s)ds+/0 w(s)dWs, (@)
which are usually written as stochastic differential equations,
dX: = g(Xg, t)dt + v( Xy, t)dVi, (€)}
dYy = h(Xg, t)dt + w(t)dWe, @
where V = {V; : t € Ry} and W = {W; : t € Ry} are

independent Wiener processes, independent of X and Yp, and g,
h, v, w are appropriate measurable functions. Remark that the
definition of the stochastic integrals in (1) and (2) necessarily in-
volves the use of martingale calculus; previous attempts to define
continuous-time models of speech appear to overlook this [7].

The stochastic differential equations implicitly define both the
sample-path properties of X, Y and their joint probability law.
The functions g and h essentially determine the form of the state
and measurement trajectories, and can be chosen to constrain the
sample paths of X and Y to follow physically-realistic patterns.
The functions v and w determine how randomness enters into
the system, and can be chosen to reflect the systematic variabil-
ity that affects the physical evolution of each component of the
system state. In order to interpret these equations as a statistical
model of speech production, therefore, a suitable state space must
be chosen and functions g, h, v, w selected to reflect prior knowl-
edge about the deterministic physics of the vocal tract and the
random intentional variability underlying speech motor control.
Remark that the model structure is general enough to encompass
both standard HMMs and articulatory or acoustic models as spe-
cial cases; all that is required is a basic state-variable description.

Once the model structure has been defined, the sample paths and
statistical properties of the state process can be calculated, and
these can be used to examine the behaviour of the model. The es-
sential tool is the functional described in the following definition.

Definition 1
Let pt be the functional defined by the expectation

pe(d) = E{o(Xe)}, %)

where ¢ is any suitably-regular measurable function on Sx .

Using p:, the probability law of the process and all of its mo-
ments can evidently be obtained by substituting appropriate func-
tions for ¢p. The usefulness of p; centres on the existence of the
recursive representation stated in the theorem below.

Theorem 1
The functional p is generated by the integral recursion

t
r@) = w@+ [ p(Lo)s ©®
0

which can be written as a stochastic differential equation

dp(¢) = pi(Lg)dt, ™
where L is the operator defined by

Ly = 8
¢ 6z T2 Z ﬁzlﬁw, ®

The operator L is the extended generator of the Markov process,
and describes how the probability mass is transported along the
sample paths. Equation (7) describes the evolution of the uncon-
ditional or a priori probability law of the state process for any
choice of g,h,v,w, and can be thought of as the “forward model”
recursively characterising the statistical dynamics of the system.

The model description is now complete, and can be used for
stochastic articulatory speech synthesis, by generating Monte
Carlo simulations of the state trajectories that arise from solution
of equations (3) and (4), and by calculating the prior probability
distribution of the state and measurement processes using (7).

3. NON-LINEAR FILTERING

In order to use the model for stochastic articulatory speech recog-
nition, procedures must be derived to recover optimal estimates of
the physical state from partial or incomplete observations.

The basic definition of the model structure generates the uncondi-
tional probability law Py, for the state process X, for any partic-
ular choice of state space and functions g,h,v,w, and this embod-
ies all of the prior knowledge about articulatory behaviour present
in the model. If the state process cannot be observed, and no mea-
surements are provided, then the optimal estimate of the hidden
state trajectory X; is given by the unconditional mean E{X,}.

When partial observations of the state process are available
through the measurement process Y, it can be shown that the
optimal (minimum variance) estimate of the hidden state trajec-
tory X; is provided by the conditional mean E{X;|F? }. More
generally, all of the information supplied by the measurements is
embodied in the shape of the conditional probability law Py, FY-

Moreover, since the state and measurement processes are gener-
ated recursively in time, it is of considerable interest to derive



recursive formulae for estimates of any function of the state. The
solution of the state estimation problem for systems modelled by
non-linear stochastic differential equations is provided by two key
results, termed the Kushner-Stratonovich and Zakai filters.

3.1. The Semi-Martingale Approach

The original approach to non-linear filtering was based on a gen-
eralisation of the innovations method used to derive the Kalman
filter, and is based on constructing the following functional:

Definition 2
Let y be the functional defined by the conditional expectation

() = E{o(X:)|F '}, ©

where ¢ is any suitably-regular measurable function on Sx .

Using ¢, the conditional probability law of the process can be
obtained. The central result of the semi-martingale approach to
non-linear filtering is the recursive representation stated below;

Theorem 2 (Fujisaki-Kallianpur-Kunita) [5]
The functional m; is generated by the integral recursion

t t
me(@) = mo(d) + / mo(Lg)ds + / 04 (h, $)dvs, (10)
0 0

which can be written as a stochastic differential equation

dri(¢) = m(Ld)dt + o¢(h, )dve, 1D
where o is the conditional covariance matrix defined by
oi(h,¢) = mi(hg) —m(h)me(P), (12)
and v is the innovations process defined by
t
v = Yi— /o ms(h)ds. (13)

The solution of the filtering problem thus consists of a stochastic
differential equation evolving on the hidden state space, and this
equation has an interesting structure. Examining the Kushner-
Stratonovich filter (11), the first term reproduces a conditional
version of the “forward model” in equation (7) describing the true
state process, and predicts the way that the system is believed to
evolve given prior knowledge. The innovations process v; de-
fines the error between the observed measurement trajectory and
the expected measurement trajectory predicted from the internal
state of the filter, whereas the conditional covariance o; measures
the expected size of the discrepancy between observation and pre-
diction. The second term in equation (11) corrects the prediction
provided by the forward model, by adjusting the filter state by an
amount proportional to the measurement error, weighted by an
estimate of how large the model expects this error to be.

Interpreting this result for speech, the non-linear filter implements
an intuitive and logical “predictor-corrector” structure, which is
based on using an “internal model” of articulatory dynamics to
propagate the state estimate, corrected by the perceived observa-
tion error calculated recursively from the measurements.

3.2. The Measure-Change Approach

An alternative approach to non-linear filtering is based on trans-
forming the original probability measure into a new measure, un-
der which the state and measurement processes are independent.

Theorem 3 (Cameron-Martin-Girsanov)

There exists a measure P on (Q, F), absolutely continuous w.r..
P, such that X and Y are independent under P,Y is a Wiener
process under P, and P coincides with P on FX .

Defining A; := E{dP/dP|F} }, construct another functional;

Definition 3
Let 7y be the functional defined by the conditional expectation

7e(d) = B{o(Xe)AdF}, a4

where ¢ is any suitably-regular measurable function on Sx .
A simple relationship can be shown to exist between 7; and 7¢;

Theorem 4 (Kallianpur-Striebel)
For any suitably-regular measurable function ¢ on Sx,

m(p) = T($)/me(1). (15)
Using 7, the “unnormalized” conditional probability law of the
process can be obtained, and by applying Theorem 4 this immedi-
ately provides the conditional probability law. The central result
of the measure-change approach to non-linear filtering is the re-
cursive representation stated in the following theorem;

Theorem 5 (Duncan-Mortensen-Zakai) [6]
The functional Ty is generated by the integral recursion
t

7@ = Tod)+ / 7o (L)ds + / 52(h, $)dYs(16)

which can be written as a stochastic differential equation

dn(¢) = w(Lo)dt +0:(h,$)dYs, an
where Gy is the conditional correlation matrix defined by
oi(h,¢) = Ti(hg). 1%

Once again, the solution of the filtering problem consists of
a stochastic differential equation evolving on the hidden state
space, but now under a different probability measure. Examin-
ing the Zakai filter (17), the first term employs a conditional ver-
sion of the “forward model” defined in equation (7) to predict the
evolution of the system state, as before. The conditional correla-
tion o; measures the expected agreement between the observed
measurement trajectory and the expected measurement trajectory
predicted from the system state. The second term in equation (17)
corrects the prediction provided by the forward model, by adjust-
ing the filter state according to the correlation between the true
observation and the filter prediction.

Interpreting this result for speech, the non-linear filter again im-
plements a “predictor-corrector” structure, based on using an “in-
ternal model” of articulatory dynamics to propagate the state es-
timate, but this time the state estimate is corrected according to
the perceived correlation with the measurements.



3.3. The Internal Model Hypothesis

Stochastic filtering theory provides two alternative solutions to
the mathematical problem of estimating the conditional probabil-
ity law of a hidden state process, governed by non-linear stochas-
tic differential equations, from partial measurements. Both of
these solutions are themselves non-linear stochastic differential
equations, and both possess a simple and intuitive “predictor-
corrector” structure. The basic structure of the optimal non-linear
filter has been shown to centre inevitably on an “internal model”
of the original system, and this is used by the filter to predict
the evolution of the system state. The Kushner-Stratonovich filter
continuously corrects the prediction by monitoring the covariance
of the error between the observed measurement and the measure-
ment predicted from the filter state. The Zakai filter also continu-
ously corrects the prediction, but monitors instead the correlation
between observed and predicted measurements.

If the model structure, which is extremely general, is chosen to
provide a faithful representation of the physics of the vocal tract,
then the logical conclusion must be that the optimal means of
recovering an appropriate underlying articulatory state or motor
command from sensory measurements necessarily involves im-
plementing an “internal model” of the system dynamics, using
the predictions of this model to correct the evolution of the state
estimate. This provides a concrete and rigorous justification for
many of the basic ideas underlying current theories of speech pro-
duction and perception (cf. [8] — [15] and references therein).

It is important to realise that the filtering equations do not simply
provide optimal estimates for particular functions of the state pro-
cess, but implicitly define the evolution of the entire conditional
probability law of the articulatory state. Many formulations of the
internal model hypothesis assume that production or perception
systems recover a single optimal trajectory. Within a statistical
framework, the “objects of production” and “objects of percep-
tion” are conditional probability measures defined over the entire
articulatory state space, completely characterising the uncertainty
in the articulatory state and the information in any measurements.
During speech production, speakers begin with a prior probability
distribution of acceptable control signals, and update this distribu-
tion by recursively conditioning on sensory feedback, randomly
sampling the result to generate a control strategy. During speech
perception, listeners begin with a prior probability distribution of
perceived articulatory states, and update this distribution by recur-
sively conditioning on observations of the speaker’s behaviour.

4. CONCLUSIONS

A statistical framework for modelling speech production and
perception has been outlined, based on representing speech by
non-linear stochastic differential equations describing a general
continuous-time hidden Markov process. The conditional prob-
ability law of the process can be determined using the Kushner-
Stratonovich or Zakai filters, and the structure of the non-linear
filtering equations is consistent with many heuristic theories of
speech perception and motor control. In particular, it has been
suggested that non-linear filtering provides a useful mathematical
justification for the proposal that speakers and listeners make use
of an “internal model” in producing and perceiving speech.
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