A SCHEMA BASED APPROACH TO DIALOG CONTROL

Paul C. Constantinides, Scott Hansma, Chris Tchou, Alexander 1. Rudnicky

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA. 15213
{pcc, hansma, ctchou,air}@cs.cmu.edu

ABSTRACT

Frame-based approaches to spoken language interaction work
well for limited tasks such as information access, given that the
goal of the interaction is to construct a correct query then
execute it. More complex tasks, however, can benefit from more
active system participation. We describe two mechanisms that
provide this, a modified stack that allows the system to track
multiple topics, and form-specific schema that allow the system
to deal with tasks that involve completion of multiple forms.
Domain-dependent schema specify system behavior and are
executed by a domain-independent engine. We describe
implementations for a personal calendar system and for an air
travel planning system.

1. INTRODUCTION

The success of frame-based information access systems, such as
for the ATIS domain (e.g., Ward & Issar, 1994) and others (e.g,
Goddeau et al., 1996), leads to the question of whether such an
approach could be adapted for domains that may require more
sophisticated dialog management. Ideally one should be able to
preserve the discourse processing capabilities that can be real-
ized within the frame paradigm, such as the use of current frame
state to guide system initiative. This could then be augmented
with additional data and control structures that allow a system to
manage extended interactions, without altering the fundamental
architecture of the system. A related issue centers on the separa-
tion of domain-specific computation and domain-independent
discourse processes and to the degree to which these two can be
successfully separated and domain-independent components
reused for different applications, an issue of general interest (e.g,
Aust et al., 1995).

This paper reports on ongoing work on dialog management in
two application domains, personal calendar scheduling and air
travel planning. In contrast to information access, both domains
are characterized by the potential for extended interaction,
though for different reasons. Scheduling can be viewed as a
problem-solving task that focuses on the manipulation of a cal-
endar data object. It can be effectively supported by providing
the user with a small set of operators that allow the generation
and validation of solutions. The task is doable on this basis be-
cause solutions need only respond to local constraints (i.e., is
this time slot already occupied?) though the user may in fact
need to engage in substantial search (our tasks presuppose a
voice-only interface, without access to a graphical display). The
air travel planning tasks differs in that the goal of working with
the system is to create an extended, internally consistent, data
structure, an itinerary. The size of the constrained data structure

imposes additional requirements on the system’s interactions
with the user, for example keeping explicit track of the progress
of the task and understanding necessary relationships between
separate components of the itinerary (e.g., noting violations).

All systems described in this paper incorporate the Sphinx
continuous speaker-independent recognition system (e.g.,
Ravishankar, 1996) as well as the Phoenix spoken language
parser (e.g., Ward & Issar, 1994).

2. THE SCHEDULER DOMAIN

The Scheduler system supports a variety of activities related to
accessing and modifying a personal information database. High
level tasks are characterized as goals and broadly include creat-
ing, moving, or deleting appointments. The user performs a
particular task (goal) through a sequence of interactions where
each subsequent interaction turn reflects the address of a sub-
goal. In this way, the discourse related to a particular goal con-
sists of a sequence of sub-goal interactions. Whereas the user
generally initiates goals, the system initiates dependent sub-
goals to resolve the goal with the user. The Scheduler dialog
control system selects an appropriate sub-goal to complete the
goal’s frame, where frames are simply tightly bound slots (“who
will you be meeting with?”), or to resolve a discourse level op-
eration (“should I make this appointment?”). Sub-goal selection
is based on the context state in order to make progress towards
the desired goal.

The dialog manager also has the ability to initiate goals during
an interaction; specifically, this is the case when a sequence of
turns results in a goal frame that is inconsistent with the state of
the database. The system detects this, and informs the user of the
inconsistency, giving the user the opportunity to choose between
modifying the goal frame in context, or initiating a new goal to
modify the database. An example of this is as follows:

U: Make an appointment with Eric at 3 p.m.
C: You already have an appointment with Kevin at 3.
U: Could you move that appointment to 4 p.m.?

The dialog control structure allows for only one goal to be in the
foreground at a time. It does, though, provide a mechanism for
sub-dialogs that could involve other goals. On completion of a
goal, focus is returned to the last pending goal. This approach
for conversational modeling is therefore stack-based.

This basic model serves as the backbone for the Scheduler dia-
log control system. Additional mechanisms, which focus on the
limitations of speech based systems and of human capability in
conversation, extend the basic model and broaden robustness of
the system under real use. For example, we discovered that users

found it difficult to manage dialog that involved more than two
levels of depth on the stack. As with the example above, the user
might push a Move goal on top of a Create goal in arranging a
schedule. A user would not, however, proceed to stack another
Move on top of a pending move; this would not represent typical
use for most human users.

Limiting the depth of the context stack and assigning priority
levels to goals are the primary mechanisms for achieving this
end. Stack depth limitation seeks to ease the potential for burden
on the user; while the system can handle pending context stacks
of arbitrary depth, a user cannot. We have examined several
approaches for implementing this including decay of goal initia-
tives, and forcing functions. The latter strategy restricts the user
by rejecting new initiatives when the stack is at a maximum
depth, whereas the former strategy discards goal frames if they
have not been addressed for a number of successful turns (or if
the frame becomes inconsistent with the state of the database).
Goal priority attempts to leverage the tendency of a user to focus
on completion of a particular task before moving on to another.
The implicit ordering between goals allows the system to score
the confidence of a user’s request and ask for clarification if
there is ambiguity.

Travel Planning System Architecture

(g Hardware

Front End

Barge-in Control

Sphinx Decoder

Airline Agent

Figure 1: The system architecture

3. TRAVEL PLANNING DOMAIN

Travel planning differs from personal information management
in that the planning task is characterized by a more complex
structure, commensurate with the complexity of the itinerary that
is created during a session. This provides both a benefit, there is
a natural task structure that the system and the user can use to
guide completion, and a difficulty, since the system needs to
maintain suitable representations of this structure and be able to
compute over them. From our perspective it is a useful task for
studying complex dialog behavior.

In working with the travel-planning task we also took the op-
portunity to focus explicitly on the problem of creating a do-
main-independent architecture for the dialog component. This
was achieved by separating dialog management into a computa-

tional engine and a declarative specification of its behavior
(which was domain-specific). Further domain-specific computa-
tion was isolated into Domain Agents with well-defined inter-
faces covering their area of expertise (such as airline schedules,
date and time interpretation). Figure I shows the current system
architecture.

3.1 Travel Planner 1

The dialog component of the Travel Planner makes use of two
key data structures: a product and a script. Conceptually, the
mutual goal for a session is to interactively create a product. In
the travel domain this is an itinerary and is composed of a col-
lection of individual forms corresponding to major product ele-
ments, such as the specification for a travel leg or for a hotel
reservation. Scripts are schemas that describe a strategy for
completing a goal by specifying the overall sequence of activity
that will result in the creation of a finished product. The script is
multi-level; the top level corresponds to the major elements of
an itinerary (e.g., a leg, a car reservation); following the con-
vention developed for the Scheduler, these are referred to as
goals. Nested within each goal are sub-goals, corresponding to
individual data elements, or targets (e.g., a date, a destination).
Associated with each sub-goal element are additional specifica-
tions for system behavior, for example, which parser slots
should be examined to fill the current target, which domain
agent to invoke, and what information to include in a query or
statement to the user. In addition to specifying how data might
be acquired (from the user or from a domain agent), the goal
statement includes descriptions of meta-interactions with the
user, for example concerning the selection of a single flight from
a set of such retrieved from the airline schedule domain agent.

The system for managing these script-based dialogs is imple-
mented as two discrete components, a Script Manager (SM) and
a Dialog Manager (DM). The Script Manager controls conver-
sation flow through the script using a stack to model the conver-
sation. In our initial implementation we separated the script into
two components (the script proper in the SM and a correspond-
ing map in the DM).

The Script Manager determines the current topic of conversa-
tion; this topical context is stored and referenced as a position
within the script. The overall structure of the script defines the
(ordered) set of topics that need to be addressed in order to com-
plete the task. It’s important to remember that at the schema
level, order is not fixed but can be overridden by a topic shift
initiated by the user. Within a topic schema order is controlled
by policy which can be either fixed or free. System 1 imple-
mented a fixed policy. Each script element, or schema, specifies
a goal and its associated sub-goals, which become active when
that schema is accessed. This script information is shared with
the Dialog Manager, but script control is decentralized from
dialog action and the main program. The Dialog Manager and
Script Manager exchange the necessary information to carry out
a dialog. The Dialog Manager passes an abstracted instance of
the context to the script manager, which the Script Manager
examines and returns the next necessary sub-goal.

The Script Manager manages the script position, or the topical
context, using a stack. The top of the stack points to the script

position that is the current topic of conversation. Other entries,
below this on the stack, represent pending schema from previous
discussion. These goals are pending, and are resolved when they
ascend to the top of the stack.

Other things being equal, the current topical context proceeds
through the script, addressing the goals and sub-goals necessary
to complete the product. User initiatives can specify new goals
and result in a topical context push that suspends the current
schema to address the schema specified by the user (“Let’s talk
about the hotel in Denver.”). This is also useful in cases where
the user interrupts the current dialog, such as in a request for
help. System initiatives may also lead to a context push opera-
tion, creating a sub-dialog for resolving inconsistent targets
(constraint violations) or more generally, undertaking clarifica-
tion dialog with the user.

Once a schema is completed, the Script Manager examines the
context stack. The Script Manager will resume any previously
suspended topic still on the stack before accepting a new schema
from the script as the current focus of conversation.

Progress through a schema is accomplished by sub-goal com-
pletion. Reasoning over an abstracted representation of the con-
text allows the Script Manager to direct conversation flow. The
responsibility of acting on a sub-goal, though, lies within the
Dialog Manager. With storage of the data context, and the abil-
ity to access other system modules, the Dialog Manager medi-
ates between these various other parts of the system (such as
language generation, parser, or other domain objects) to perform
system activity and to manage and construct the context.

3.2 Travel Planner 2

The Travel Planner 1 framework allowed us to implement a
system that could successfully help a user complete a single-city
itinerary (i.e., to and from one destination). It also suggested that
the representation we chose for dialog was sufficiently powerful
for the class of systems that we were proposing to implement.
The specification language we developed, however, would be
more accurately characterized as an assembly-level pseudo-code
than as an actual programming language for dialog, therefore a
goal for the second implementation was to create a higher-level
language that would be compiled into the dialog pseudo-code.
The resulting language allowed us to rapidly develop and mod-
ify more complex versions of the Travel Planning task.

This high-level language, or schema language, merged the two
types of specification discussed previously, unifying and ex-
tending both of the previous control components (script and
map). Whereas the previous implemented specification method
required a detailed understanding of the system operation, the
new schema language was closer to a higher-level language
using conventional primitive operators. Many of the previously
used operators were expanded to reflect both additional func-
tionality and refinement of the first implementation. The access
structures to domain objects remained primarily unchanged;
these allow the system designer to easily invoke domain object
methods. The context structure was also unchanged, allowing
any schema to access and modify the global context. Flow con-
trol was further abstracted, giving the designer the ability to

more easily program explicit dialog strategies. Interaction with
the parser was also improved, allowing a schema to examine in
more detail the structure of the parse. These improvements to the
system facilitated expansion of the System 1 travel planning
schema implementation. After porting the script/map imple-
mentation to the new schema version, it was expanded. For ex-
ample, we easily added more detailed schema related to time,
hotels, and car rental, as well as expanded the script to handle
multiple legged trips.

The System 2 schema language is programmed by a system
designer and compiled into the script and map files for use at run
time. The schema file is structured into two separate portions. At
the top of the file, the designer declares the context and interme-
diate variables that the schemas will use. Variables are typed,
and are specified as targets if they are part of the product. The
other section in the file contains the schemas used to control
dialog. Fach schema constitutes a section which can contain
assignment operators, calls to object methods (including back-
end and language generation), if clauses, and invocations of
other schema. The code here defines the dialog system behavior.

Further modifications to the new system schema were aimed
towards adjusting the interaction policy. We observed that the
first system’s challenge/response form of interaction was limit-
ing to most users. Specifically, users tended to express their
requirements in a way that did not directly correspond with the
system’s expectations. To adjust for this form of interaction, we
made a distinction specifying system response strategies as fol-
lowing either strict or free policy. The terms strict and free ex-
presses the type of input that the system will accept with respect
to expectation for response. A strict policy disallows the user
from specifying information other than what the system expects
(based on the current task, goal, or sub-goal); a free policy en-
ables the user to express their constraints in any order they see
fit. A free policy enhances the system’s conversational ability, as
natural conversation is not traditionally constrained. Rigid pol-
icy, although constraining, allows for other techniques that in-
crease system understanding accuracy to be introduced. Gener-
ating an expectation for admissible new input allows the speech
decoder to use language models constrained or biased towards
this expectation. Additionally, it could allow the parser to better
disambiguate the most valid parse using expectation in metrics
for parse scoring. These methods can buffer otherwise fragile
interactions that arise when noisy input leads to unreliable inter-
pretations.

The System 2 version underwent noticeable usability improve-
ment over the System 1 version. Expanded task coverage al-
lowed a greater degree of freedom of types of itineraries that
could be created; policy expansion permitted more flexible and
rich interactions. The new framework allowed us to easily up-
date and revise the dialog strategy yielding fast turnaround time
for system improvement.

Although first set of changes yielded good overall improve-
ments, there are still lessons within this system which we be-
lieve are worth exploring. Specifically, we are interested in
augmenting the specification language. Sub-dialog and sub-
process structures are not explicitly modeled in the current sys-
tem, but rather implicitly arise under the schema framework.

This approach does not give the system designer a simple
mechanism for implementing these classes of interaction. Gen-
eral representation of an extended set of discourse phenomena
through primitives in the schema language could ease system
design and enrich interaction.

The context management facility of the Dialog Manager has
been sufficient to support our current implementations. It does
not, however, support other context operations that could be of
use. Specifically, state rollback is currently unsupported. Defi-
nition and propagation of constraints between context data is
also unsupported. This facility is for flagging and acting upon
user inputs that are inconsistent with the world or context state,
in addition to providing “common sense” defaults for new
schema.

The current system only allows for a single schema to be in
focus at one time. As schemas are goals, the user cannot coordi-
nate the completion of multiple goals through concurrent topic
discussion. This may be valuable in cases where user constraints
are related to dependencies between different goals.

We also believe that providing dynamic control over policy
would be of benefit. This would allow a strict or free policy to
be selected contingent on the characteristics of a session, such as
input quality, user skill level, etc.

A broader problem, which affects dialog systems in general, is
consistency checking between knowledge structures. A detailed
description of this is outside the scope of this paper, but its role
in system improvement is worth mentioning. The components in
a dialog system rely on knowledge bases that are often — in im-
plementation at least — independent. This poses a problem when
these information sources are updated inconsistently with other
knowledge sources, or when new information is not transferred
to all other relevant sources. System bugs that arise from these
inconsistencies are often the most difficult to trace. Automatic
methods for conferring modifications across dependent knowl-
edge sources would reduce or eliminate this problem.

4. SYSTEM EVALUATION

The system has been in operation since the spring of this year
and has been available for experimental use by individuals be-
yond the development group (the existence of the system was
publicized within the University, though not beyond it). To pro-
vide a preliminary evaluation, we analyzed calls recorded over a
12 day period. A total of 57 calls were recorded, from 26 differ-
ent individuals.

The results from system use indicate that the majority of callers
were able to complete meaningful dialogs. Specifically:

e 38 (or 2/3 of the calls) calls were successful and produced
itineraries consistent with the constraints provided by the
user, who remained within the domain as defined in the
system.

e 9 calls were successful, resulting in consistent itineraries
where the user had difficulty getting some information they
requested; the user asks for information or service that was

not understood by the system (i.e., not in the domain as im-
plemented).

e 10 calls were unsuccessful due to back-end problems (2,
schedule information was obtained over the Web), poor
recognition (3, e.g., a child’s voice), giving up for reasons
seemingly unrelated to system performance (3), or user
demands that exceeded system capabilities (1, demands
which even a real travel agent could not satisfy)

Thus, our system overall achieved 82% task completion. Al-
though most people booked two-leg flights, session reservations
varied from one-leg to four-leg flights. The average completion
time for two-leg flights was about 4 minutes and 10 seconds, as
compared to about 3 minutes and 55 seconds for similar human
to human sessions for two flight reservations. Although the
times are comparable, it would be inaccurate, at this stage of
development, to claim that the automatic system provides a level
of service comparable to that of a human agent. With a view to
this, we are exploring more diagnostic metrics for characterizing
performance.

5. ACKNOWLEDGEMENTS

The work described in this paper would not have been possible
without the help provided by various members of the Carnegie
Mellon Speech Group.

This research was sponsored in part by the Department of the
Navy, Naval Research Laboratory under Grant No. N00014-93-
1-2005. The views and conclusions contained in this document
are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
U.S. Government.

6. REFERENCES

1. Ward, W. and Issar. S. Recent improvements in the CMU
spoken language understanding system. In Proceedings of
the ARPA Human Language Technology Workshop,
March 1994, 213-216.

2. Goddeau, D., Meng, H., Polifroni, J., Seneff, S. &
Busayapongchai, S. A form-based dialogue manager for
spoken language applications. Proceedings of ICSLP, 1996,
701-704.

3. Aust, H., Oerder, M. Seide, F. and Steinbiss, V. The Philips
automatic ftrain timetable information system. Speech
Communication 17, 1995, 249-262.

4. Ravishankar, M., Efficient Algorithms for Speech
Recognition. Ph.D Thesis, Carnegie Mellon University,
May 1996, Tech Report. CMU-CS-96-143.

