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ABSTRACT

Speech coding affects speech recognition performance, with rec-
ognition accuracy deteriorating as the coded bit rate decreases.
Virtually all systems that recognize coded speech reconstruct the
speech waveform from the coded parameters, and then perform
recognition (after possible noise and/or channel compensation)
using conventional techniques. In this paper we compare the rec-
ognition accuracy of coded speech obtained by reconstructing the
speech waveform with the speech recognition accuracy obtained
when using cepstral features derived from the coding parameters.
We focus our efforts on speech that has been coded using the 13-
kbps full-rate GSM codec, a Regular Pulse Excited Long Term
Prediction (RPE-LTP) codec. The GSM codec develops separate
representations for the linear prediction (LPC) filter and the
residual signal components of the coded speech. We measure the
effects of quantization and coding on the accuracy with which
these parameters are represented, and present two different meth-
ods for recombining them for speech recognition purposes. We
observe that by selectively combining the cepstral streams repre-
senting the LPC parameters and the residual signal it is possible
to obtain recognition accuracy directly from the coded parame-
ters that equals or exceeds the recognition accuracy obtained
from the reconstructed waveforms.

1. INTRODUCTION

Speech coding affects speech recognition accuracy, with word
accuracy deteriorating as the coded bit rate decreases [4, 6]. Due
to the increase of speech communication applications employing
coding algorithms and the interaction of these speech communi-
cations systems with automatic speech recognition applications,
coding of speech can become a significant problem that limits the
performance of such applications [3, 6, 7]. Several approaches
that deal with this problem have been proposed (e.g. [3, 7]).
These approaches involve the regeneration of the speech signal
prior to applying compensation and adaptation techniques. The
degradation in recognition accuracy is greater when the speech
used to train the recognizer had not undergone the identical cod-
ing process (i.e., “mismatched conditions™). Nevertheless, using
similarly-coded speech for both training and testing reduces but
does not eliminate the degradation in recognition accuracy com-
pared to the accuracy obtained with uncoded speech [7].

Using the 13-kbps full-rate GSM codec, we consider in this
paper the effects of speech coding on parameter representation
accuracy and on speech recognition accuracy. GSM is a Regular
Pulse Excited Long Term Prediction (RPE-LTP) coding process
[2]. We assume that the speech recognition system has access to
the transmitted GSM parameters of the coded speech signal. We
analyze the effects of lossy compression and quantization on the
cepstra derived from quantized Log Area Ratios (LAR), and

from the residual signal reconstructed from the RPE-LTP param-
eters, by comparing them to corresponding cepstra derived from
uncoded and unquantized versions of these signals.

We will demonstrate that the effects of quantization and coding
affect the individual coefficients cepstral representations of the
LPC filter and residual excitation signal in differing amounts.
We will use these observations to guide us in combining the cep-
stral representations of the LPC filter and the residual signal to
minimize speech recognition error rate.

In Section 2 we discuss briefly the characteristics of the GSM
codec. We discuss the effect of GSM coding and quantization on
speech on cepstral features in Section 3, and we present recogni-
tion results employing those features. In Section 4 we discuss
methods for recombining the coefficients extracted from these
cepstral features in order to minimize the recognition error rate
of GSM-coded speech signals.

2. THE FULL-RATE
GSM SPEECH CODEC

The full-rate GSM speech codec [2] is a lossy speech coding-
decoding algorithm based on a regular pulse excited long term
prediction scheme [5]. GSM converts 13-bit digital signals sam-
pled at 8 kHz into blocks of 260 bits for every 160 original sam-
ples. Hence, the GSM coding algorithm produces a gross bit rate
of 13.0 kbps, although the actual GSM transmitted bit rate is
higher due to added error recovery and packet information. The
RPE-LTP coding algorithm is a member of the linear predictive
analysis-by-synthesis (LPAS) family of coding algorithms [4].

As is the case with all LPAS algorithms, the GSM codec repre-
sents the speech signal using two sets of parameters: information
about the LPC filter (in the form of quantized log area ratios, or
Q-LARS) and information about the coded residual signal (in the
form of quantized RPE-LTP parameters). The compression of
the residual signal is a lossy process which introduces distortion
into the residual signal. During decoding, the residual signal is
first reconstructed from the RPE-LTP information, and then fil-
tered by the short-term synthesis filter, whose parameters are
derived from the received LARs.

Figure 1 shows a schematic representation of a general analysis-
by-synthesis coder. In the specific case of the full-rate GSM
coder the block that minimizes the difference between the actual
residual signal and the reconstructed residual signal computes
the quantized RPE-LTP representation of this difference.
Besides the lossy representation of the residual signal that this
algorithm introduces in the RPE-LTP section, quantization of the
LAR coefficients plays a role in the degradation observed in
speech that has undergone the GSM coding process.
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Figure 1: A simplified block diagram of a typical analysis by
synthesis coder.

3. THE IMPACT OF PARAMETER QUAN-
TIZATION AND CODING ON CEPSTRA

In this section, we describe the procedure used to develop ceps-
tral features for speech recognition from signals and parameters
developed by GSM coding of speech. We consider three sets of
cepstral vectors: vectors derived directly from the reconstructed
GSM speech signal, vectors derived from the log area ratios rep-
resenting the LPC filter, and vectors derived from the residual
signal. We compare these cepstra with the uncoded and unquan-
tized versions of the signals and parameters listed above to deter-
mine the extent to which coding and quantization affects
representation accuracy. Finally, we compare the accuracy
obtained using these various features in speech recognition sys-
tems.

3.1. Recognition using Reconstructed
GSM Speech

Most recognition systems operate directly on speech waveforms
that are decoded from (GSM parameters in conventional fashion.
The differences between the GSM-decoded signal and the origi-
nal speech waveform can cause a degradation in speech recogni-
tion. GSM coding affects the various cepstral coefficients used to
represent decoded speech in different proportions. In Figure 2 we
plot the normalized mean square error (NMSE) between corre-
sponding coefficients of the original and GSM-decoded speech
cepstral vectors (normalized by dividing the mean square error
by the average squared value of a given coefficient). If we con-
sider the effects of distortion to be an additive noise signal, the
NMSE would be roughly proportional to the inverse of the sig-
nal-to-noise ratio (SNR). As can be seen in Figure 2, the NMSE
introduced by GSM coding generally increases as the coefficient
index increases.

3.2. Deriving Cepstra from the LPC Log
Area Ratio Parameters

Cepstral coefficients can also be obtained from the quantized log
area ratio (LAR) parameters that are developed in the course of
GSM coding. The LAR parameters are transformed into the cor-
responding LPC coefficients, from which cepstral coefficients
are generated directly using the approach described in [1]. The
GSM standard specifies that 8 coefficients are generated using an
eighth-order LPC analysis.
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Figure 2: Normalized mean square error (NMSE) of the
cepstra of GSM-reconstructed speech waveforms using the
cepstra of the original waveforms as the standard.
Normalization is with respect to the average energy of each
cepstral coefficient.

The NMSE of cepstral coetficients developed from the LPC anal-
ysis of GSM-encoded speech signals are plotted in Figure 3, in
the same fashion as in Figure 2. The general effect of GSM cod-
ing for these coefficients appears to be similar to that of the
NMSE of the coefficients representing the original waveform in
that the NMSE generally increases as the coefficient order
increases.
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Figure 3: Normalized mean square error of cepstra derived
from the quantized LARs of GSM-encoded speech
waveforms with respect to the corresponding cepstra of the
original waveforms (without quantization).

3.3. Deriving Cepstra from the Residual
Signal

Cepstral coefficients can also be generated from the RPE-LTP
parameters that represent the residual excitation signal. The RPE-
LTP coefficients are obtained from conventional cepstral analysis
of time functions. While the residual signal is generally assumed
to contain primarily information that is less relevant to the
speaker independent speech recognition task such as pitch, peri-
odicity, and glottal waveform information [8]. However, because
only an eighth-order LPC analysis is used in LPC coding, the
residual signal still carries information that is useful for speech
recognition.

We generated cepstral coefficients from the residual obtained
from the RPE-LTP parameters of the GSM codec (i.e., the recon-
structed GSM residual) and compared their values to the corre-
sponding coefficients for the original uncoded speech signal.
Figure 4 shows the NMSE of the cepstral coefficients represent-
ing GSM-encoded speech, with respect to the corresponding



coefficients of the original uncoded speech. In contrast to the
NMSE of the reconstructed waveform and the Q-LARs shown
in Figs. 2 and 3, the NMSE of the cepstral coefficients represent-
ing the residual signal tends to decrease as the coefficient order
increases. We also note that the magnitude of the NMSE of the
residual is much greater than that of the cepstra of both the Q-
LARSs and the reconstructed speech waveform.
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Figure 4: Normalized mean square error of cepstra derived
from the residual signal of GSM-encoded speech
waveforms with respect to the corresponding cepstra of the
original waveforms (without quantization).

4. EFFECT OF GSM CODING ON
SPEECH RECOGNITION ACCURACY

In this section we describe the results of a series of speech rec-
ognition experiments using cepstral features derived from the
reconstructed waveforms and from the GSM parameters them-
selves. Recognition experiments were performed using a
reduced-bandwidth and downsampled version of the speaker
independent component of the Resource Management RM1 cor-
pus [9] under clean and noisy conditions. In all cases the speech
signal was low-pass filtered to 3.5 kHz and downsampled to 8
kHz. For noisy conditions, stationary additive lowpass colored
noise was added to yield a resulting SNR of approximately 18
dB. The colored noise was generated by filtering white gaussian
noise through a simple 2-pole filter with a resonance of approxi-
mately 650 Hz and a half-power bandwidth of approximately
400 Hz. The acoustic models employed consisted of a set of
senonically-tied continuous density HMMs, modeled by approx-
imately 2500 senones and 2 gaussians per mixture.

4.1. Recognition Accuracy using Original
and Reconstructed Speech Waveforms

Table 1 compares speech recognition accuracy obtained using
various cepstral feature sets, with and without the additive noise.
For each feature set, acoustic models were trained with features
used to test the system, and without the additive colored noise.
Results in the first three rows of Table 1 compare the recognition
accuracy using Mel-frequency cepstral coefficients (MFCCs)
generated from the original speech without GSM coding (Row
1), and GSM-processed speech (Rows 2 and 3). Training is
“mismatched” in Row 2 in that the system was trained using
uncoded speech; GSM coding is used for both training and test-
ing for the results in Row 3. The effect of GSM coding on recog-
nition error rate was relatively modest for this dataset: the error
rate increased by about 20% for clean speech and 6% for noisy
speech with mismatched training, and most of the degradation
was eliminated when GSM coding was used in training as well
as in testing.

Feature Set Clean Noisy
MFCC coefficents from 89.7% 45.0%
original waveform
MFCC coefficients from 87.7% 41.5%
GSM-decoded speech
(mismatched models)

MFCC coefficients from 89.2% 47.5%
GSM-decoded speech

(matched models)

LAR CEPSTRA 87.9% 44.1%
Q-LAR CEPSTRA 87.5% 44.9%
RESIDUAL CEPSTRA 71.1% 1.4%
GSM-RESIDUAL CEP- | 67.5% 3.9%
STRA

Table 1: Recognition accuracy obtained for speech
without and without GSM encoding, and with and without
additive noise, using cepstral features derived from the
waveform and from the GSM parameters directly. See text.

4.2. Recognition Accuracy using Features
Derived from GSM parameters

Rows 4 through 6 of Table 1 compare recognition accuracies
obtained using cepstra generated from unquantized and quan-
tized LARs, and from the original residual signal and the GSM-
restored residual signal. The accuracy of this pair of features
reveals the existence of information relevant to recognition in the
residual signal. These results indicate that recognition accuracy
obtained from features derived from the LAR and Q-LAR
parameters is almost as good as recognition accuracy obtained
from the reconstructed waveforms themselves. Features derived
from the residual signal are somewhat less effective.

5. COMBINING Q-LAR CEPSTRA WITH
GSM-RESIDUAL CEPSTRA

Since in traditional LPC theory, reconstructed speech waveforms
are obtained by the convolution of the impulse response of the
LPC filter with the residual signal, the cepstrum of the speech
waveform can be estimated by adding the cepstra of the LPC fil-
ter and of the residual. As discussed in Section 3, however, the
NMSE of these two sets of cepstral coefficients behave differ-
ently. In this section we show that we can improve recognition
accuracy by selectively combining Q-LAR cepstral coefficients
with cepstral coefficients derived from the GSM-restored resid-
uval signal.

We consider two ways of combining the cepstra representing the
LPC filter and the residual filter: (1) direct addition of the two
sets of cepstra (which indeed corresponds to convolving the
impulse response of the LPC filter with the residual signal), and
(2) assembling a /3-dimensional composite cepstral vector by
concatenating a subset of the cepstral coefficients representing
the LPC filter with a subset of the cepstral coefficients represent-
ing the residual waveform. We implemented the latter procedure
by combining the first i coefficients of the quantized-LAR Cep-
stra and the last 13 minus i coefficients of the GSM-restored



residual cepstra. These subsets of coefficients were chosen
because the NMSE of the residual cepstra is smaller for the
higher order coefficients, as shown in Figure 4. In further experi-
ments we confirmed that good recognition accuracy for the con-
catenated vector could be obtained provided using other
combinations of specific coefficient, provided that the first two
cepstral coefficients from the residual signal were excluded.
(These coefficients exhibit the greatest NMSE.)

Table 2 compares recognition results for a set of values of the
parameter i, which we refer to as “cutoff values”, ranging from
i=5 to i=10. We note that in this table a cutoff of zero is equiva-
lent to using a 13-element GSM-residual cepstral vector; a cutoff
of 13 is equivalent to using Q-LAR cepstra. From Table 2 it
appears that best results are obtained when approximately 8 cep-
stral coefficients representing the LPC filter are combined with 5
coefficients representing the residual signal.

Cutoff Clean Noisy
0 67.5% 3.9%
5 88.8% 40.5%
6 89.2% 42.7%
7 89.7% 46.4%
8 89.7% 49.4%
9 89.6% 50.2%
10 88.7% 50.2%
13 87.5% 44.9%

Table 2: Recognition accuracy obtained by combining Q-
LAR and GSM-residual cepstral using various cutoff values.
(See text.)

Feature Clean Noisy
Concatenation of Q-LAR | 89.7% 49.4%
and residual cepstra
(cutoff value equals 8)

Sum of Q-LAR and 89.1% 47.1%
residual cepstra

Table 3: Performance of Cepstral features resulting from
the concatenation and addition of LAR and residual cepstral
streams.

Table 3 compares recognition accuracy obtained by concatenat-
ing the Q-LAR and the GSM-residual cepstral vectors, as dis-
cussed above, with simply adding them together as would be
suggested by LPC theory. As can be seen, the concatenated fea-
ture vector is more effective than simple addition for both condi-
tions considered. Even more interesting is the fact that
recognition accuracy obtained using the concatenated GSM fea-
ture vector is greater than both the accuracy obtained using
reconstructed waveforms, and the accuracy obtained with the
original uncoded speech waveform.

6. DISCUSSION AND SUMMARY

The degrading effect of GSM coding on speech recognition accu-
racy has been associated with the distortion introduced to ceps-
tral representations of the log area ratios and the restored residual
signal, after quantization and lossy coding. Of the representations
of GSM parameters considered, we observed greatest normalized
mean-square error for the highest-order cepstral coefficients rep-
resenting the LARs (and hence the LPC filter), and for the low-
est-order cepstral coefficients representing the residual excitation
signal. In order to obtain best speech recognition accuracy, it is
necessary to concatenate lower-order coefficients that represent
the LPC filter with higher-order coefficients representing the
residual signal. Speech recognition accuracy for the NIST RM1
database was greater when the concatenated feature vector
derived directly from the GSM parameters was used than when
features were extracted from speech waveforms reconstructed by
the GSM decoder.
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