TRAPS - CLASSIFIERS OF TEMPORAL PATTERNS
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ABSTRACT

The work proposes a radically different set of features
for ASR where TempoR Al Patterns of spectral energies are
used in place of the conventional spectral patterns. The
approach has several inherent advantages, among them ro-
bustness to stationary or slowly varying disturbances.

1. INTRODUCTION

1.1. Spectral features

In 1665 Isaac Newton made the following observation:
"The filling of a very deepe flaggon with a constant streame
of beere or water sounds yer vowells in this order w, u, w,
o, a, e, i, y' [8]. What young Newton observed was the
spectral resonance peak which enhanced the spectrum of
the beer pouring sound and moved up in frequency as the
”deepe flaggon” was filling up. Since then, attempts to find
acoustic correlates of phonetic categories mostly followed
Newton’s lead and studied the spectrum of speech.

Spectrum-based techniques form the basis of most fea-
ture extraction methods in current ASR. A problem with
the spectrum of sound is that it can easily be modified
by variety of relatively benign means such as frequency
characteristics of the communication channel or narrow-
band noise. Subsequently, the spectrum-based features are
inherently fragile and various supplementary techniques
need to be applied to combat the effects of realistic com-
munication environments.

1.2. Temporal Processing?

Many of the noise-robust techniques employ the tempo-
ral domain. Some of these are reviewed in [7] where the
extreme position is taken by challenging the early Newton
view and most of the current speech recognition wisdom
and proposing that ’...put in a question the whole concept
of spectral analysis for deriving an internal representation
of acoustic signal in human cognition. Even though there
18 a strong evidence that human auditory perception does
some sort of spectral analysis of the incoming acoustic sig-
nal, it may be that the main reason for frequency selec-
twvity of human auditory system s not to derive frequency
content of a given segment for phonetic classification but
rather to provide means for optimal choice of high signal-
to-noise (SNR) regions for deriving reliable sub-band based
features by temporal analysis of the high SNR sub-bands of
the signal.’

The current work examines this proposal.

2. PHONETIC CLASSIFICATION
USING TRAPS
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Figure 1: Temporal Paradigm for ASR

We substitute a conventional spectral feature vector in
phonetic classification by a 1 sec long temporal vector of
critical band logarithmic spectral energies [6] from a single
frequency band (Fig 1). Similar to our earlier work on
data-driven design of RASTA filters [10], the phonetic class
is defined with respect to the center of this 101 point (at
10ms frame rate) temporal vector.

Since the classifier based on temporal vectors is attempt-
ing to capture the appropriate temporal pattern from the
acoustic stream, we call such temporal sub-band classifier

TRAP *.

2.1. Experimental setup

We have used two databases for our work, the OGI-
Stories corpus [4] and OGI Numbers corpus [5]. The
OGI Stories database consists of telephone quality con-
versational speech. A subset of approximately 2 hours
of phonemically-labeled speech was used for training the
temporal classifiers. The OGI Numbers corpus consists of
a set of continuous, naturally spoken utterances collected
from many different speakers over the telephone. A sub-
set of this database (approximately 0.2 hours) formed the
cross-validation set for testing the trained temporal clas-
sifiers. T'wo more independent subsets of this database of
approximately 1.7 hours and 0.6 hours were also used for
experiments as described in the following sections.

ITRAP of course stands for the TempoRAl Pattern



2.2. TRAPs For Phonemes

To understand the nature of the information that is
available in the time trajectories of spectral energy, we
first examine for patterns in the temporal evolution of the
basic sound units typically used in ASR, i.e phonemes.

We analyzed the OGI-Stories corpus and considered the
29 phonetic classes which also occur in the OGI-Numbers
corpus. For each phoneme, a set of vectors representing its
temporal evolution are extracted from a particular crit-
ical band. FEach vector is an approximately 1 sec long
(101 frames at 10ms frame rate) time trajectory centered
around the frame which belongs to the class (phoneme)
under consideration. The mean of these vectors is then
used to represent the pattern corresponding to the tempo-
ral evolution of that class. It should be noted that only
the center frames in all these vectors belong to the same
class. Other frames may belong to any other class in whose
context the center class can occur in conversational speech.
Thus the mean operation averages over all the surrounding
context of the phoneme under consideration. The variance
of these vectors is minimum around the center since the
center frames belong to the same class and increases away
from the center due to the change in context.

/ah/

Figure 2: Mean TRAPs for 16 phonemes at the fifth
critical band time trajectory. The dotted line represents
the center frame

Fig. 2 represents the mean temporal patterns (which we
call Mean TRAPs to emphasize their urge to capture an
appropriate phoneme) of 16 phoneme classes. It can be
seen from the figure that some of the classes have very dis-
tinctly different Mean TRAPs, e.g. the vowel /ah/ com-
pared to the stop-consonant /b/ and some of the Mean
TRAPs are very similar, e.g. the vowels.

Classification Using TRAPs

As a first test of utility of TRAPs, we have tried to use a
simple template matching approach on the Mean TRAPs
in which the correlation coefficient was used as a measure
of similarity. To classify a frame in a particular critical
band, a 1 sec time trajectory around that frame is matched
to the 29 Mean TRAPs for that critical band. The frame is
assigned to the class which gives the maximum correlation
with the given TRAP. In order to de-emphasize the con-
tributions of the spectral energies towards the edges of the
time trajectory, we first removed the mean and weighted
each pattern by a Hanning window.

2.3.

As seen from the Table 1 the performance in the indi-

vidual bands is not high but is well above the chance.

A further significant improvement was obtained from a
nonlinear (Multi-Layer Perceptron based) TRAP (which
we call a Neural TRAP). The Neural TRAP used in our
experiments is a single hidden layer MLLP with 101 dimen-
sional input vector, a 300 unit hidden layer and 29 outputs.
The input consists of 1 sec long spectral energy time tra-
jectory centered around the frame to be classified.

The baseline system used is the standard hybrid hid-
den Markov model/multi-layer perceptron (HMM/MLP)
speech recognizer [3] from the International Computer Sci-
ence Institute, Berkeley, California, in which phonetic clas-
sification is performed by a single hidden layer MLP. The
features used for the baseline system consist of 8 PLP cep-
stral coeflicients [6] with utterance-based cepstral mean
subtraction along with 9 delta and 9 acceleration coeffi-
cients. The input to the MLP consists of 9 frames of con-
text with the current frame at the center of this context
window (234 dimensional input). The hidden layer has
500 units and the output of the MLP consists of posteriori
probabilities of the 29 phonetic categories occurring in the
Numbers corpus. The baseline system is trained on the 1.7
hours subset of the Numbers corpus. This baseline system
yields 21 % frame-level error and 6.5 % word-level error.

It is interesting to see that based only on a 1 sec time
trajectory of spectral energy in a single critical band, the
performance of each Neural TRAP is approximately 40%
of the performance of the baseline system which uses all
spectral information and around 170ms of temporal infor-
mation.

SYSTEM FRAME ERROR (%)
FOR EACH CRITICAL BAND
Mean TRAPs 78 - 81 %
Neural TRAPs 65 - 69 %

Table 1: Frame-level performance of different TRAPs on
OGI Numbers corpus

Table 1 gives the range of the frame errors for the 29
TRAPS based on phonetic categories for each of the 15
critical bands when tested on the 0.2 hours subset of the
Numbers database. It is encouraging to note that the per-
formance in each critical band is approximately 80% error
even for the simplest of the TRAPs - the Mean TRAPs,
and goes well below 70 % error for the nonlinear Neural
TRAPs. This is significantly higher than chance (96.5%
error for 29 classes) in spite of the fact that none of the
TRAPs have access to any information about spectral cor-
relations between neighboring bands.

2.4. Combination of TRAPs.

Since there are about 15 critical bands available within
the telephone bandwidth, we have at our disposal 15 out-
puts from 15 different TRAPs. The question is how the
performance improves by combining their outputs.

As in our previous work on multi-band ASR [9], we
use a MLP for combining the outputs obtained from each
of the 15 TRAPs. The input to the combining network
is the concatenated vector of the correlations (in case of
Mean TRAPs) or class conditional log-likelihoods (in case
of Neural TRAPs) of the 29 phonetic classes from each of
the 15 TRAPs (435 dimensional input). The network has



a single hidden layer of 300 units and 29 outputs which
represent the merged estimate of the class posteriori prob-
abilities. The combination network thus has 139200 pa-
rameters which is comparable to the 131500 parameters of
the baseline system.

Table 2 compares the frame error and word error rate
of the baseline system, the Mean TRAP-based recognizer,
and the Neural TRAP-based recognizer. The frame-level
error was derived on the the 0.2 hours cross-validation sub-
set of the OGI Numbers database, the word-level error on
the 0.6 hours test subset (4670 words) of the OGI Numbers
database.

It is seen that on the frame level, the performance of
the baseline (spectrum-based) and the Mean TRAP com-
biner is comparable, the Neural TRAP-based recognizer
performs better. On the word level, the baseline recognizer
is the best, but the Neural TRAP-based recognizer is close
behind. The word error of the simple Mean TRAP-based

recognizer is about twice the error of the baseline system.

An analysis of the frame errors (not shown here) indi-
cated that the TRAP system typically corrects about 40%
of errors made by the baseline system and hence has sig-
nificant complementary information.

SYSTEM FrRAME ERROR | WORD ERROR
Baseline 21% 6.5%
Mean TRAP-based 22% 11.5%
Neural TRAP-based 18.7% 7.6 %
Combined Baseline and TRAP System

Mean Trap-based 19% 6.0%
Neural Trap-based 16.9% 5.5%

Table 2: Performance of the Baseline system and the
TRAP-based systems on the OGI Numbers corpus

Combination of The Baseline and
TRAP-based Recognizer

2.5.

As discussed above the TRAP-based recognizer has sig-
nificant amount of complementary information as com-
pared to the baseline system. In an attempt to capital-
ize on this observation we combined the outputs of the
baseline system and the TRAP-based recognizers at the
frame level using an MLP classifier. This classifier had
58 inputs (concatenation of the 29 class-conditional log-
likelihoods from each of the systems), 500 hidden units
and 29 outputs. From Table 2 it is seen that the combi-
nation (especially with the Neural TRAP recognizer) sig-
nificantly improves the performance as compared to the
baseline system.

3. PRELIMINARY EXPERIMENTS
WITH NOISE

To assess possible advantages of the TRAP-based recog-
nizer we investigated its performance in several artificially
degraded situations. The recognizer was always trained
only on the clean speech. For these experiments we have
used only the basic template correlation-matching of Mean

TRAPs.

3.1. TRAPs in additive white noise

As a preliminary experiment we added white noise from
the NOISEX-92 database at signal-to-noise ratio of 10dB
to the OGI Numbers database.

SYSTEM FRAME ERROR | WORD ERROR
Baseline 41.6.% 21%
TRAP-based 37.7% 27%
Combination 33.6% 19%

Table 3: Performance on white noise

Table 3 shows that the baseline-TRAP combination
gives significant improvement in performance at both the
frame and the word levels.

3.2. TRAPs in convolutive noise

The utterance-based cepstral mean subtraction tech-
nique is known to be robust to convolutive noise. TRAPs
should also be robust to such distortion because of local (1
sec) mean removal inherent in the TRAP matching proce-
dure. To simulate convolutive distortion the test data was
pre-processed by a pre-emphasis filter.

SYSTEM FRAME ERROR WORD ERROR
Clean Noise Clean | Noise
Baseline without CMS | 21.8% | 33.3% | 8.0% 16%
Baseline 21% 22.5% 6.5% 7%
TRAP-based 22% 23% 11.5% | 13%

Table 4: Comparison of degradation in performance from
clean test condition to condition corrupted by convolutive
distortion

Table 4 compares the performance of the baseline sys-
tem and the the TRAP-based system to the baseline sys-
tem without cepstral mean subtraction. The performance
of the system without cepstral mean subtraction degrades
rapidly from 21.8% frame error on clean test data to 33.3%
on pre-emphasized data as shown in the the table. On
the other hand both the baseline system with mean sub-
traction and TRAP-based system (where no explicit mean
subbtraction is done on the data) show only a slight degra-
dation in performance as compared to the clean test case.
This indicates an inherent robustness of TRAPs to this
often encountered source of error in ASR.

4. PHONETIC CLASSIFICATION
USING BROAD TRAPS

4.1. Clustering of TRAPs

As noted in Section 2.2, some of the classes have very
similar TRAPs. Based on this observation we clustered
TRAPs using a hierarchical clustering algorithm with a
correlation based similarity measure. The clustering re-
sulted in 5 distinct broad-category TRAPs (which we call
Broad TRAPs) as shown in Fig 3 (only 4 Broad TRAPs
are shown, the fifth Broad TRAP contained only the si-

lence class).

It is interesting to note that although no assumptions
were made for the clustering algorithm, the TRAPs clus-
ter into the five broad phonetic categories i.e 1) vowels and
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Figure 3: 4 Broad TRAPs clusters of the fifth critical

band time trajectory

diphthongs 2) stop-consonants 3) fricatives 4) schwas (re-
duced vowels) and 5) silence. It is also interesting to note
that irrespective of the phoneme duration which varies
from approximately 30ms for stop-consonants to 100ms
for vowels, the effect of the center phoneme lasts for a
considerable time.

These Broad TRAPs have distinct and intuitive tempo-
ral patterns, e.g. the Broad TRAP corresponding to the
vowel cluster has a peak in the center since vowels are char-
acterized by high energy as compared to the other sounds.
The stop-consonant Broad TRAP has a dip off-center to
the left, since a stop-consonant is usually preceded by a
closure characterized by low energy.

4.2. Classification Experiment

The Broad TRAPs obtained in each critical band can
further be used for classification into the 5 broad categories
similar to the template matching technique as described in
Section 2.3. The frame-level error for such a classification
in each critical band is in the range of 22% - 28%. The 5
correlations obtained in each critical band can further be
used for phonetic classification. This is achieved by con-
catenating the correlation vectors from the Broad TRAPs
in each critical band (75 dimensional vector) and using it
as input to an MLP with 500 hidden units and 29 outputs.

WORD ERROR
12.8%
28.5%

FRAME ERROR
24.6%
40.8%

TEST CONDITION
Clean
White noise

Table 5: Performance with the Broad TRAPs

The performance based on Broad TRAPs is not all
that different from the performance achieved by the Mean
TRAPs. This result is consistent with Allen’s suggestion
for a partial recognition of features within each critical
band [1] and suggests that the full phoneme classification
on each sub-band temporal energy pattern may not be
necessary.

5. DISCUSSION

As would be obvious to those readers who are fa-
miliar with Allen’s interpretation of Fletcher’s research
[1], this work represents a further development of the
Fletcher/Allen model of speech recognition. Movement
away from the conventional across spectrum processinghas

recently emerged in works on multi-band ASR [9, 2]. The
notion of the across time processinghas been present in the
work on RASTA processing for quite some time [7]. The
current work carries both concepts to the extreme and at-
tempts to get away with conventional spectral correlations
altogether and to rely exclusively on temporal energy pat-
terns with subsequent merging of partial recognitions in
the individual frequency channels. We demonstrate that
it i1s possible to classify phonemes with a reasonable ac-
curacy based on rather long (much longer than a single
phoneme) temporal pattern of spectral energy in a sin-
gle critical band alone. We also demonstrated that by
combining classification results from the individual critical
bands one can achieve recognition performance quite com-
petitive with the current state-of-art spectral-based ASR
techniques.

This result opens ways for dramatically different ap-
proaches to acoustic modeling in ASR.
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