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ABSTRACT

Confidence estimation of the output hypothesis of a speech recog-
nizer offers a way to assess the probability that the recognized words
are correct. This work investigates the application of confidence
scores for selection of speech segments in unsupervised speaker
adaptation. Our approach is motivated by initial experiments that
show that the use of mis-labeled data has a significant cost in the
performance of particular adaptation schemes. We focus on a rapid
self-adaptation scenario that uses only a few seconds of adaptation
data. The adaptation algorithm is based on an extension to the
MLLR transformation method that can be applied to the observa-
tion vectors. We present experimental results of this work on the
ARPA WSJ large vocabulary dictation task.

1. INTRODUCTION

Recently, confidence estimation of the output string of a speech
recognition system has become an important topic of research [4,
5, 8, 9]. As speech recognition systems find their way into real
world applications, confidence provides a way to assess the imper-
fect recognition results, and detect out-of-vocabulary (OOV) words
or generate repair dialogs in a natural language system. In this pa-
per, we investigate the use of confidence annotation of the recog-
nizer output in an unsupervised adaptation scheme.

In many applications it is not feasible to obtain adaptation data of
the new condition or speaker prior to the use of the system. In such
cases, the adaptation data consist of utterances of the speaker that
are spoken during the transaction. This on-line adaptation process
makes use of the data as they sequentially become available, ad-
justing the system parameters dynamically to the speaker. Typically
these methods operate in unsupervised mode, that is, the correct
transcription of the speech data is not known. Instead, the most
likely hypothesis that is generated by the recognizer is used to align
the speech waveforms for the adaptation process.

We examine a rapid adaptation scheme, self-adaptation, that uses
only a few seconds of data. In this approach, we use the speech data
and recognition result of a single sentence to adapt the system and
then recognize the same sentence again. We present experimental
results that show that self-adaptation provides a significant reduc-
tion in the word error rate of 10%. Previous adaptation results [6]

using several minutes of adaptation data have shown little perfor-
mance differences between supervised and unsupervised adaptation
schemes. The effectiveness of this particular adaptation process is
greatly affected by the mis-labeled data due to the limited amount of
adaptation data. This observation motivates our use of confidence
metrics to guide the adaptation process by selecting or emphasizing
speech segments with high confidence.

The rest of the paper is organized as follows: in section 2 we briefly
outline the adaptation transform that we used throughout our ex-
periments, in section 3 we define the confidence measures and in
section 4 we describe the experimental setup and the current results
of our work.

2. CONSTRAINED MODEL-SPACE
ADAPTATION

Adaptation methods have become important components of large
vocabulary speech recognition systems as they compensate for mis-
matches between training and testing conditions, which are caused
due to different speaker characteristics and channel or environment
conditions. Model-based approaches, such as Maximum A Poste-
riori (MAP) estimation [3] and linear regression adaptation [1, 7]
have shown significant improvements in recognition accuracy by
adjusting the parameters of a speaker independent (SI) system based
on speech material (adaptation data) which is representative of the
new condition. In this work we have applied an extension of the
Maximum Likelihood Linear Regression (MLLR) approach termed
constrained model-space adaptation. It is a maximum likelihood
matrix transformation that is applied to the means and the variances
of the Gaussian densities, and it is constrained in the sense that the
transformation applied to the variances must correspond to that of
the mean vectors. One advantage of the constrained transformation
compared to the original MLLLR is that it can be applied to the ob-
served feature vectors, thus avoiding the computationally expensive
update of the model parameters. This transform has been originally
proposed in [2] where the interested reader will find a detailed pre-
sentation of the topic.

The constrained model-based transform has the general form
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In [1], the problem was solved for the diagonal transformation case.
Our application follows [2] where a solution for the full matrix case
is provided assuming that the original models have diagonal covari-
ance. It is easily shown that the transformation of the Gaussian pa-
rameters corresponds to an equivalent transformation of the feature
vector o¢:
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It is now evident that the constrained model-space transform may
be implemented as a transformation of the observed feature and the
likelihood of an observation o; for a particular Gaussian A (1, )
is computed as:
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thus avoiding the computationally expensive update of the model
parameters.

3. CONFIDENCE METRICS

Most speech recognizers assign scores to word and sentence hy-
potheses that are not absolute measures of probability but rather
relative measures used to rank order hypotheses. Therefore the rec-
ognizer scores are not comparable across different sentences and not
useful as confidence measures. Instead, we compute two confidence
metrics, one derived from word lattice densities and one based ex-
clusively on acoustic scores.

3.1. Lattice Density

During recognition, hypotheses whose likelihood scores fall be-
low certain thresholds are considered unlikely and pruned from the
search space. In time segments where the likelihood for a partic-
ular word is much higher than the likelihood of other competing
hypotheses, many of the competing other words are pruned. Con-
versely, if a large number of words has similar likelihood, the num-
ber of propagating hypotheses will be relatively high. It has been
shown in the literature [4, 5, 8, 9] that the uncertainty of the rec-
ognizer expressed by the number of hypotheses in a time segment
correlates with the word error rate for that time segment. For each
word in the word lattice we compute, C' M}, the number of com-
peting hypotheses that end at the same time, normalized in the range
[0, 1].

3.2. Acoustic Confidence Measure

The C'M;4: confidence metric depends implicitly on the language
model and dictionary constraints that control the breadth of the
recognition search space. Our second confidence metric C M. is
solely based on acoustic scores and can be applied either on the
word or the phone level. It is defined as the posterior probability
that a particular phone or word w is uttered during a time segment,
given the sequence of acoustics observations O for that segment
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where () is the set of all possible phone sequences in the time seg-
ment.
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®

For computational expediency, we estimate a set of monophone
Gaussian mixture densities, so that each monophone is modeled
by a 3-state HMM with all states tied to the same Gaussian mix-
ture density. Using Viterbi alignment, we find the phone-frame
correspondence of the recognizer output and compute the numer-
ator using the monophone Gaussian densities. By tying all states of
the monophone models, the denominator is found by a fairly inex-
pensive dynamic programming application while enforcing a mini-
mum three frame time constraint. In practice we further simplified
the denominator by computing the maximum score instead of the
sum. In this work we assume that all prior probabilities are uni-
form. This formulation can be extended by incorporating statistics
for the phone sequences in the form of bigram statistics at the phone
level.

4. EXPERIMENTS AND DISCUSSION

The baseline recognition system is a speaker independent, continu-
ous density, tied-state, cross-word triphone HMM system developed
at Motorola, Lexicus. The speech was parameterized into a 39 di-
mensional feature vector that includes 12 MFCCs, the normalized
log energy and the first and second differences of these parame-
ters. The acoustic training data consists of 7,200 sentences from
the SI-84 WSJO corpus. The resulting system has approximately
30,000 Gaussians. The recognition experiments were conducted on
the 20,000 word open vocabulary and the 5,000 word closed vocab-
ulary sets from the November 1992 DARPA evaluation that consist
of 333 and 330 sentences respectively. A time-synchronous single
pass decoder using the standard bigram languange models supplied
the data was used in the experiments. In order to perform Viterbi
alignment of the reference word transcription, the 20K word pro-
nunciation dictionary is augmented to include any words of the ref-
erence transcription which would otherwise be OOV.

We first calculated the confidence score estimates C'M;,; and
C M. The word and phone sequences hypothesized during recog-
nition are aligned to the reference word and phone sequence in order
to label each decoded hypothesis as either correct or incorrect. The
labeling takes into account time information and marks as incorrect
segments with less than 80% overlap.

Fig. 1 shows the histograms of the lattice density based confidence
scores C'M,,; for the correctly and the incorrectly recognized hy-
potheses for the 20K test set. The second plot in Fig. 1 shows
the cumulative probability functions of the confidence scores for
the correct and incorrect hypotheses. Fig. 2 shows corresponding
plot for the phone-level acoustic confidence. These graphs show
that C Mj,; is a indicator of word confidence, a result consistent
with [4, 9]. The acoustic based confidence, even though it provides
less separation between correct and incorrect hypotheses, was found
useful in selecting phone segments that are correctly labeled in an
otherwise mis-recognized word which simply matches part of the
pronunciation of the reference word.

We conducted a number of experiments to evaluate the effect of su-
pervision in the adaptation process in the incremental and the self-
adaptation schemes. During incremental adaptation, the adaptation
parameters are updated after the recognition of a test utterance using
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Figure 1: Distribution of lattice density based confidence scores for
correctly labeled (solid line) and incorrectly labeled (dashed line)
hypotheses. The second subplot shows the cumulative probability
functions of the two distributions
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Figure 2: Distribution of phone-level acoustic confidence scores for
correctly labeled (solid line) and incorrectly labeled (dashed line)
hypotheses. The Second subplot shows the cumulative probability
functions of the two distributions

the accumulated statistics of all incoming test utterances up to that
point. The updated parameters are used to recognize the following
utterance. These statistics are gathered by aligning the observation
sequence to the recognized hypothesis in the unsupervised mode or
to the reference word transcription in the supervised model. Ta-

ble 1 summarizes the results of these experiments. These results
show that supervised adaptation has little or no effect in the adap-
tation process, possible due to the relatively low error rate of the
recognized hypotheses. In the self-adaptation scheme, each utter-

| Condition | 05K | 20K |
Baseline 7.7% | 12.5%
Unsupervised Incr. Adaptation | 6.0% | 10.8%
Supervised Incr. Adaptation 6.0% | 10.7%

Table 1: Effect of supervision on the adaptation process for incre-
mental adaptation on the ARPA November 1992 05K and 20K test
sets. Adaptation is performed using the constrained model-space
transform method.

ance is inifially recognized using adaptation parameters that are ini-
tialized to identity. Then the adaptation parameters estimated using
the statistics from the alignment of the recognized hypothesis. The
adaptation transform is applied to the observation stream and the
utterance is recognized again. To evaluate the effect of supervi-
sion, we performed a wizard experiment whereby we labeled the
recognized hypothesis with correct and incorrect tags based on the
reference word transcription. We then used only the time segments
that were labeled as correct to estimate the adaptation parameters.
The results of these experiments are shown in Table 2. We observe
that adaptation on a few seconds of speech is enough to provide a
significant reduction in word accuracy, comparable to the incremen-
tal adaptation scenario that uses considerably more data (at least for
the 20K test). Furthermore, the wizard experiment shows that mis-
recognized segments greatly affect the performance of the adapta-
tion due to the limited amount of data, which is an encouraging re-
sult for the application of confidence metrics to guide the adaptation
process.

Condition | 05K | 20K

Baseline 77% | 12.5%
Unsupervised Self Adaptation | 6.9% | 11.0%
Correct-only Self Adaptation | 6.5% | 10.3%
Confidence + Self Adaptation | 6.7% | 10.8%

Table 2: Effect of supervision on the adaptation process for self-
adaptation on the ARPA November 1992 05K and 20K test sets.
Adaptation is performed using the constrained model-space trans-
form method. Correct-only self adaptation indicates the wizard ex-
periment, where mis-recognized segments are discarded.

We applied a heuristic selection of speech segments for adaptation
based on the word-level lattice density confidence scores and the
phone-based acoustic confidence scores. We rejected all segments
that correspond to words with C M, ,; below a threshold ,,;, but re-
tained any phone subsegments that had C' M, higher than an acous-
tic confidence threshold 8q.,1. Similarly, for the speech segments
with C M, greater than ;. that are accepted, we discarded phone
subsegments that had C'M,. lower than a second threshold 8.2
such that 84c2 < 84c,1. These confidence thresholds are exper-
imentally determined based on the distribution of the confidence



scores. Unfortunately, our results so far (Table 2) have shown small
incremental improvements over the unsupervised scenario.

5. CONCLUSIONS

We reported on the application of the constrained model-space
transform, a new formulation of the Maximum Likelihood Linear
Regression transform for speaker adaptation. An attractive prop-
erty of this approach is that it can be applied as a transformation
on the observation space, thus incurring little computational cost
for on-line adaptation schemes. We then examined the effect of su-
pervision on two on-line adaptation schemes, incremental and self-
adaptation. Our experimental results showed that the use of the ref-
erence word transcription provides very little additional benefit in
the context of on-line incremental adaptation.

Self-adaptation, the process of adapting on a single utterance and
then recognizing this utterance again, is better suited for very short
interactions with a speech recognition system, where the system
needs to adapt rapidly based on a few seconds of speech. In this
case the use of mis-labeled speech segments greatly affect the per-
formance of adaptation. We proposed the use of two confidence
measures to discard speech segments with low confidence that prob-
ably correspond to mis-recognitions. We used a word-based lattice
density metric and a phone-based acoustic confidence metric for
our experiments. The results have only shown marginal improve-
ment over the unsupervised self-adaptation case. This could be
attributed to the accuracy of the particular confidence metrics and
the heuristics that we employed for the selection of the high con-
fidence speech segments. Our current work addresses these issues,
to improve the accuracy of the confidence scores and the selection
algorithm, as well as investigate alternative confidence metrics and
decision strategies.
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