REAL-TIME PROBABILISTIC SEGMENTATION
FOR SEGMENT-BASED SPEECH RECOGNITION!

Steven C. Lee and James R. Glass

Spoken Language Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA

ABSTRACT

In this work, we investigate modifications to a probabilistic seg-
mentation algorithm to achieve a real-time, and pipelined capa-
bility for our segment-based speech recognizer [4]. The existing
algorithm used a Viterbi and backwards A* search to hypothe-
size phonetic segments [2]. We were able to reduce the com-
putational requirements of this algorithm by reducing the effec-
tive search space to acoustic landmarks, and were able to achieve
pipelined capability by executing the A* search in blocks defined
by reliably detected phonetic boundaries. The new algorithm
produces 30% fewer segments, and improves TIMIT phonetic
recognition performance by 2.4% over an acoustic segmentation
baseline. We were also able to produce 30% fewer segments on
a word recognition task in a weather information domain [11].

1. INTRODUCTION

The SUMMIT segment-based speech recognizer developed by
our group searches an acoustic-phonetic graph during the decod-
ing phase [4]. Although this graph can conceivably contain all
possible segmentations of the speech signal, we have tradition-
ally chosen to incorporate an explicit segmentation phase into the
recognizer in order to reduce the size of the search space. The
segmentation has typically consisted of restricting the locations
of phonetic transitions, by identifying a set of allowable bound-
aries or landmarks, and also restricting the set of connections
between landmarks (i.e., hypothetical phonetic segments).

The use of a segmental framework for recognition allows us to
consider a richer set of acoustic-phonetic features than can be
incorporated into conventional frame-based representations [6].
Currently, for example, feature vectors are extracted for phonetic
analysis both over hypothesized phonetic segments and at their
corresponding boundaries. We have always realized, however,
that the use of an explicit segmentation stage can be a source of
possible error if necessary phonetic segments are not hypothe-
sized. Unfortunately we cannot search the entire segment space
in near real-time; thus the segmentation stage is an important
component in our recognizer.

Our early acoustic segmentation methods used spectral informa-
tion to identify landmarks and segments [3]. More recently, we
have developed a segmentation procedure which uses a frame-
based Viterbi and backward A* to produce a phonetic graph [2].
Since this method uses probabilistic acoustic-phonetic models,

I'This research was supported by DARPA under contract N66001-96-C-8526,
monitored through Naval Command, Control and Ocean Surveillance Center.

the resulting graphs appear to be a better match to the subse-
quent segment-based search. Thus they can generally be smaller
than our acoustic segmentations, and have improved phonetic
and word recognition accuracies as well [6]. Although this prob-
abilistic segmentation algorithm is effective, it is computation-
ally intensive, and cannot run strictly in a left-to-right fashion.
In this work [10], we describe modifications to the algorithm
which enable us to achieve real-time recognition performance
while maintaining the improved quality of the graphs.

2. EXPERIMENTAL FRAMEWORK

Experiments for this work are conducted in phonetic recogni-
tion and word recognition. For phonetic recognition, the TIMIT
acoustic-phonetic corpus is used [8]. As is frequently done by
others to report TIMIT recognition results, the set of 61 TIMIT
labels are collapsed into a set of 39 labels [9]. For word recog-
nition, the JUPITER corpus is used [5]. The corpus consists of
spontaneous speech data from a live telephone-based weather
information system. While complete experimental results are
presented here for TIMIT, only final results are presented for
JUPITER due to space limitations.

Utterances are represented by 14 MFCCs computed at 5 ms
intervals. Both boundary-based diphone models and segment-
based models are used. The context-dependent diphone models
are mixtures of diagonal Gaussians based on MFCC averages ex-
tending out to 75 ms on both sides of the boundary [5]. The seg-
ment models are also mixtures of diagonal Gaussians, based on
measurements taken over segment thirds; delta energy and delta
MFCCs at segment boundaries; segment duration; and the num-
ber of boundaries within a segment [4]. Language constraints
in all recognition experiments are provided by a bigram. Error
rate is computed as the sum of substitutions, insertions, and dele-
tions. To measure computation, a real-time factor is used. It is
defined as total recognition processing time on a 200MHz Pen-
tium Pro, divided by the total time of the speech utterances being
processed. A number greater than one translates to processing
slower than real-time.

3. LANDMARK-BASED REPRESENTATION

In our original probabilistic segmentation procedure the first pass
phonetic recognizer is frame-based [2]. In this work, we sought
to reduce the computational requirements of the algorithm by
shrinking the search space of the first pass recognizer. Instead of
scoring at regularly spaced 10 ms frames, we first investigated
using lower frame-rates. In addition, we experimented with

| Frame-interval (ms) | Error Rate (%) | Real-Time Factor |

10 (constant) 289 3.01
20 (constant) 28.2 1.52
30 (constant) 294 1.01
33 (variable) 28.5 0.92

Table 1: TIMIT dev set results for various frame rates.

landmarks that have been detected by a spectral change algo-
rithm. These variable frame-rate landmarks have been success-
fully applied previously to an acoustic segmentation algorithm,
and eliminate large amounts of computation spent considering
sections of speech unlikely to be segment boundaries [4].

To study the viability of decreasing computation by lowering the
frame rate of the first pass recognizer, we evaluated the phonetic
recognition performance and computation requirements using
different frame rates. Although the segmentation algorithm pro-
duces a graph of segmentations rather than just a single choice,
we felt that overall top-choice performance would be correlated
to the overall quality of the corresponding graph. Frame-based
diphone models were used for these experiments.

As shown in Table 1, the results are divided into two sections.
The top section presents results for regularly spaced frames,
and the bottom section presents results for variable spaced land-
marks. The table shows that as the frame-interval increases (de-
creasing frame rate), computation expectedly decreases. For reg-
ularly spaced frames, error rate improves initially as the frame
rate decreases but worsens substantially at very low frame rates.
For landmarks, error rate is competitive even when compared to
the best error rate from regularly spaced frames. Overall, the ta-
ble shows that switching from a constant frame-interval of 10 ms
to landmarks does not significantly degrade error rate, but signif-
icantly reduces computation. Based on these results, all subse-
quent experiments in this paper use a landmark-based search.

4. BLOCK PROCESSING

In addition to minimal computation requirements, a real-time
algorithm must also be able to run in a pipeline. The original
probabilistic segmentation algorithm could not run in a pipeline
because it relied on the backward A* search to produce the N-
best paths. This required the completion of the forward Viterbi
search before the backward A* search could begin. This section
addresses the pipelining problem and describes a block process-
ing algorithm in which the Viterbi and A* searches run in blocks
defined by reliably detected phonetic boundaries. In addition,
this section introduces the concept of soft boundaries to allow
the A* search to recover from mistakes by the boundary detec-
tion algorithm.

4.1. Mechanics

Figure 1 illustrates the block probabilistic segmentation algo-
rithm. As the speech signal is being processed, probable seg-
ment boundaries are located. As soon as one is detected, the
algorithm runs the forward Viterbi and backward A* searches
in the block defined by the two most recently detected bound-
aries. The A* search outputs the N-best paths for the interval

block #1 |block #2 | block #3 block #4

- | - | .- |

vl

N best N best | N best N best
guesses |[guesses | guesses | guesses
segment |segment| segment| segment

graph graph graph graph

Figure 1: Ilustration of block processing using hard boundaries.

of speech spanned by the block, and the segment-graph for that
section is subsequently constructed. The algorithm continues by
processing the next detected block. The end result is that the
segment-graph is produced in a pipelined left-to-right manner as
the input is being streamed into the algorithm.

4.2. Boundary Detection Algorithms

The boundary detection algorithm used to detect the block
boundaries must have two properties. First, the boundaries de-
tected must be very reliable, as the N-best algorithm running
in each block cannot possibly produce a segment that crosses a
block. A missed boundary by the boundary detection algorithm
is much preferred to one that is inserted because the probabilistic
segmentation algorithm running within each block can hypothe-
size segment boundaries inside the block. Second, the boundary
detection algorithm must produce boundaries at a reasonable fre-
quency so that the latency for the segmentation algorithm is not
too long. In this work, two different boundary detection algo-
rithms were examined. They are described separately below.

Acoustic boundaries The acoustic boundary detection algo-
rithm detects probable segment boundaries based on acoustic
change. Boundaries are placed at major peaks of spectral change
in the speech signal. These boundaries are a subset of the land-
marks used to save computation. A threshold on the height of
the peaks controls the frequency of the boundaries. In this work,
the threshold is set such that a boundary is detected on average
every 200 ms. Using this threshold, approximately 85% of the
detected boundaries in TIMIT were within 10 ms of an actual
segment boundary in the phonetic transcription. Since even hu-
mans frequently disagree about the precise placement of segment
boundaries, we believed this was a reasonable result.

Viterbi boundaries The Viterbi boundary detection algorithm
is based on statistics in the Viterbi search. Boundaries are placed
at frames where all active nodes above a threshold are transition
nodes. The threshold controls the frequency of the boundaries.
In this work, it was set to produce a boundary on average every
200 ms. The performance of this algorithm is similar to that of
the acoustic boundary detection algorithm.

Experiments In this experiment, the difference in performance
between acoustic and Viterbi boundaries in the block segmenta-

tion algorithm was examined. The boundaries were evaluated on
segment-based recognition performance and computational re-
quirements. The TIMIT dev set results are shown in Figure 2.
Recognition performance in terms of number of segments per
second versus error rate, is plotted on the left, and computation
performance, shown as the number of segments per second ver-
sus the real-time factor, is plotted on the right. The number of
segments per second is controlled by a variable N that deter-
mines the number of /N-best paths to include in the segment-
graph. The acoustic boundaries are represented by the broken
lines, and the Viterbi boundaries are represented by the solid
lines. The computation plots on the right show that they both
require about the same amount of computation. However, the
recognition plot on the left shows that the Viterbi boundaries
clearly outperform the acoustic boundaries in terms of recogni-
tion error rate. Therefore, all subsequent TIMIT experiments use
Viterbi boundaries. For JUPITER, acoustic boundaries outper-
form Viterbi boundaries. All subsequent JUPITER experiments
use acoustic boundaries.

40
& ||-viteroi S gt |- Viterbi .
é:“ -Acoustic g -Acoustic /
» 35 s !
<)
L0 E4
Q3o — -~ '_T 3
2 g
o x?

25 1

20 40 60 80 20 40 60 80

Segments Per Second Segments Per Second

Figure 2: Plots showing recognition and computation perfor-
mance of acoustic versus Viterbi boundaries.

4.3. Recovery From Errors

The statistics presented for each of the boundary detection algo-
rithms show that they are generally reliable. However, they are
not perfect. In particular, they do occasionally insert a boundary
where a boundary does not exist. When this occurs, the N-best
algorithm running between the boundaries cannot hypothesize
actual segments that cross the boundary.

To counter this problem, soft boundaries were introduced. Fig-
ure 3 illustrates this concept. In contrast to Figure 1, where the
N-best algorithm runs between every neighboring hard bound-
ary, the N-best algorithm runs between every other soft bound-
ary. This allows the /N-best algorithm to recover from mistakes
in the boundary detection algorithm by hypothesizing segments
that span parts of two blocks. Unfortunately, this benefit comes
at a cost. An algorithm using soft boundaries requires more com-
putation than one using hard boundaries because some sections
of the speech signal are processed twice. In addition, an algo-
rithm based on soft boundaries has a higher latency because the
output lags the latest input data by at least one block.

Experiments In this experiment, the performance difference
between soft and hard boundaries was examined. Again, the
boundaries were evaluated on segment-based recognition per-
formance and computational requirements. The TIMIT dev set
results are shown in Figure 4. Recognition performance in terms
of number of segments per second versus error rate, is plotted on
the left, and computation performance, shown as the number of

-

Figure 3: Illustration of block processing using soft boundaries.

segments per second versus the real-time factor, is plotted on the
right. The soft boundaries are represented by the broken lines,
and the hard boundaries are represented by the solid lines. The
left recognition plot shows that the soft boundaries outperform
the hard boundaries (especially at low segment rates) in terms
of error rate, but the right computation plot shows that this per-
formance comes at a cost of greater computation, as expected.
Similar results were obtained for JUPITER. This is one tradeoff
to be taken into account when looking for an optimal operating
point for the segmentation algorithm.

30
° -
g o9t [~ Hard % 6
T -Soft g
o28 o4
i E
@27 =
C ~ N = 2
226 e 3
o o

25 0

20 40 60 80 20 40 60 80

Segments Per Second Segments Per Second

Figure 4: Plots showing recognition and computation perfor-
mance of soft versus hard boundaries.

5. FINAL EXPERIMENTS

Based on the results from the development experiments, final
TIMIT experiments, done on the core test set, used Viterbi bound-
aries. For TIMIT, an improvement over the baseline acoustic seg-
mentation in terms of error rate, number of segments, and com-
putation was attained using soft Viterbi boundaries. In addition,
when the recognizer was allowed to run without any computa-
tional constraints, a further error rate reduction was achieved by
simply increasing the size of the segment-graph. This result is
shown in Table 2.

Error Rate (%) | Segments/Second
Baseline 29.1 87.2
Real-time 284 56.6
Slower than real-time 28.1 61.3

Table 2: Final TIMIT recognition results on the core 7est set.

Final JUPITER experiments, done on the test set, used acous-
tic boundaries. For JUPITER, the new segmentation algorithm
achieved an improvement in terms of error rate and number of
segments using acoustic soft boundaries. However, the algo-
rithm at that operating point required significantly more compu-
tation than the baseline. To further reduce computation, the full
set of phonetic labels used in the segmentation algorithm were
collapsed into a set of broad-classes. A broad class size of 20
was able to achieve an improvement in word error rate and num-
ber of segments at a much more reasonable level of computation.

Table 3 summarizes the test set results for TUPITER. In the table,
the real-time result used the set of broad-class models, and the
slower than real-time result used the full set of models.

Error Rate (%) | Segments/Second
Baseline 10.6 99.7
Real-time 10.5 65.2
Slower than real-time 10.0 76.3

Table 3: Final JUPITER recognition results on the zest set.

6. DISCUSSION

In this paper, various modifications to the probabilistic segmen-
tation algorithm presented in [2] were explored, with the goal of
creating an algorithm that is fast, runs in a pipeline, and results in
competitive recognition error rate. Computational savings were
attained by using acoustic landmarks located at irregular inter-
vals rather than regularly spaced frames. A left-to-right pipeline
capability was achieved by running the probabilistic segmenta-
tion algorithm in blocks defined by probable segment bound-
aries.

The algorithm developed in this paper has several attractive at-
tributes. First, the algorithm allows for a tradeoff between ac-
curacy and computation as determined by the number of seg-
ments produced. If computation is an important factor for an
application, the algorithm can be tuned to run faster than the
baseline while still producing a competitive error rate. If error
rate is more important than computation, the algorithm can be
tuned to produce an error rate significantly better than the base-
line. More importantly, the algorithm outputs a smaller segment-
graph containing more relevant segments than that produced by
the baseline acoustic segmentation. This allows more sophisti-
cated segment-based modeling techniques to be explored. For
example, Chang has developed a novel segment-based acoustic
modeling technique, termed near-miss modeling, that relies on a
quality segment-graph [1].

Finally, the algorithm produces information in the first pass rec-
ognizer that can be reused to guide acoustic modeling in the
subsequent segment-based search. For example, if the first-
pass recognizer identifies a segment to be a fricative, then the
segment-based search can use features and models tailored for
distinguishing between phones within the fricative class. Het-
erogeneous measurements that improve within-class classifica-
tion performance have been developed by Halberstadt [6], and
can easily be applied to this framework.

There are several possible extensions to this work. Currently the
number of segments in the segment-graph is controlled by /V, the
number of paths used to produce the segment-graph. This N is a
constant, regardless of the size of the block being processed, or
the confidence that the segments in the block are correct. Allo-
cating a larger V to bigger blocks or blocks with low confidence
should help to distribute segments to areas of the speech signal
with more uncertainty.

In this work, the relative improvement achieved for word recog-
nition is less than for phonetic recognition. We believe that the
algorithm’s weaker performance on words can be attributed to a

pronunciation network mismatch. For phonetic recognition, the
pronunciation network used in probabilistic segmentation and in
the subsequent segment-based search is the same. As is typical
in phonetic recognition, this network allows any phone to follow
any other phone. For JUPITER, the pronunciation network used
in probabilistic segmentation allows any phone to follow any
other phone, but the network used in the subsequent segment-
based search contains tight word-level phonetic constraints.

This paper concentrated on the tradeoff between recognition per-
formance and computation, without regard to memory require-
ments. However, memory can affect the speed of execution as
well if the memory requirements are so enormous that time spent
swapping memory dominates over time spent computing. This
phenomenon is seen at very large /N in this paper.

Finally, a word graph search which directly computes a graph
could replace the N-best computation. This should eliminate
redundant computation used to expand previously seen segmen-
tations in the /N-best search [7].

7. REFERENCES

1. J. Chang, Near-Miss Modeling: A Segment-Based Approach
to Speech Recognition. Ph.D. thesis, MIT, 1998.

2. J. Chang and J. Glass, “Segmentation and modeling in
segment-based recognition,” in Proc. Eurospeech, Rhodes,
Greece, pp. 1199-1202, 1997.

3. 1. Glass, Finding Acoustic Regularities in Speech: Applica-
tions to Phonetic Recognition. Ph.D. thesis, MIT, 1988.

4. J. Glass, J. Chang, and M. McCandless, “A probabilistic
framework for feature-based speech recognition,” in Proc.
ICSLP, Philadelphia, PA, pp. 2277-2280, 1996.

5. J. R. Glass and T. J. Hazen, “Telephone-based conversa-
tional speech recognition in the JUPITER domain,” in these
Proceedings, Sydney, Australia, 1998.

6. A. Halberstadt and J. Glass, “Heterogeneous measurements
and multiple classifiers for speech recognition,” in these
Proceedings, Sydney, Australia, 1998.

7. 1. Hetherington, M. Phillips, J. Glass, and V. Zue, “ A* word
network search for continuous speech recognition,” in Proc.
Eurospeech, Berlin, Germany, pp. 1533-1536, 1993.

8. L.Lamel, R. Kassel, and S. Seneff, “Speech database devel-
opment: Design and analysis of the acoustic-phonetic cor-
pus,” in Proc. DARPA Speech Recognition Workshop, Palo
Alto, CA, pp. 100-109, 1986.

9. K. Lee and H. Hon, “Speaker-independent phone recog-
nition using hidden Markov models,” IEEE Trans. ASSP,
vol. 37, no. 11, pp. 1641-1648, 1989.

10. S. Lee, Real-Time Probabilistic Segmentation for Segment-
Based Speech Recognition. M.Eng. thesis, MIT, 1998.

11. V. Zue, S. Seneff, J. Glass, L. Hetherington, E. Hurley,
H. Meng, C. Pao, J. Polifroni, R. Schloming, and P. Schmid,
“From interface to content: Translingual access and deliv-
ery of on-line information,” in Proc. Eurospeech, Rhodes,
Greece, pp. 20472050, 1997.

