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ABSTRACT

Fixed-rate feature extraction which is used in most
current speech recognizers is equivalent to sampling the
feature trajectories at a uniform rate. Often this sam-
pling rate is well below the Nyquist rate and thus leads
to distortions in the sampled feature stream due to alias-
ing. In this paper we explore various techniques, rang-
ing from simple cepstral and spectral smoothing to filter-
ing and data-driven dimensionality expansion using Lin-
ear Discriminant Analysis (LDA), to counter aliasing and
the variable rate nature of information in speech signals.
Smoothing in the spectral domain results in a reduction in
the variance of the short term spectral estimates which di-
rectly translates to reduction in the variances of the Gaus-
sians in the acoustic models. With these techniques we
obtain modest improvements, both in word error rate and
robustness to noise, on large vocabulary speech recognition
tasks.

1. INTRODUCTION

It is well known that the rate of temporal change in
acoustic realizations of phonetic units varies significantly
according to the phonetic unit in question. For exam-
ple, in plosives the temporal variation is much faster and
shorter in duration than in vowels. This suggests that a
variable frame rate should be used for feature extraction
in speech recognition. However, most current state-of-the-
art speech recognizers use a constant frame rate of 100
frames/second, which limits the extent of temporal varia-
tion in the cepstral features to 50Hz. Experiments indicate
that variations in the cepstra sometimes occur at a much
faster rate than this frame-rate. Therefore straightforward
downsampling causes aliasing distortions in the cepstral
features.

The standard method to alleviate aliasing effects is to
lowpass filter the trajectories before downsampling. Low-
pass filtering or smoothing can be achieved many ways.
In this paper we explore various techniques, ranging from
simple cepstral and spectral averaging to filtering using a
lowpass filter designed using a constrained least-squares
optimization method. This approach of filtering, moti-
vated purely from signal processing considerations, is very
different from RASTA processing, which is motivated from
human auditory perception considerations, since the filter-
ing 1s done within each frame and not across frames as is

done in RASTA [1].

We also propose another approach to handle the variable
rate nature of information in the cepstral trajectories with
fixed-rate processing. This we achieve through filtering
accompanied by dimensionality expansion. This can be
achieved either by examining the spectral content in each
of the cepstral trajectories and deciding to increase the
number of filter-banks for that dimension if a significant
amount of energy is outside the original lowpass filter or
by using a purely data-driven method such as LDA.

This paper is organized as follows. In the next section
we describe the effects of sampling feature trajectories and
suggest various methods to reduce these effects. The fol-
lowing section presents results on large vocabulary tasks.

2. CEPSTRAL TRAJECTORIES

Let the short-time power spectrum of a speech signal,
s(n), be approximated by a windowed periodogram as fol-
lows:

S(w,m) =13 s(n)W(m —n)exp™"|* (1)

The kth cepstral trajectory sampled at the same rate as
the speech is then given by:

cx(m) = %‘/ log S(w, m) exp(—jwk)dw (2)
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Current speech recognition systems compute cepstral fea-
tures every centisecond which amounts to down-sampling
each cepstral trajectory to a sampling rate of 100 sam-
ples/s. Straightforward down-sampling leads to aliasing
when the frequency content in the cepstral trajectories ex-
ceeds the Nyquist frequency, which is 50Hz for a frame
rate of 100. Figure 1 is a plot of the time trajectory of
the the 11th cepstral coefficient and it spectral content. It
clearly shows that for this cepstral dimension the Nyquist
sampling rate is much higher than 100 samples/s.

2.1. Overcoming aliasing

The effects of aliasing can be overcome in the following
ways:

1. by sampling each dimension of the cepstral stream at
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Figure 1: Spectral content in 11th cepstral trajectory

its own Nyquist rate leading to variable rate process-
ing on the dimensions or

2. by sampling the cepstral stream at a very high rate
and lowpass filtering each dimension of the cepstral
stream before downsampling to 100 frames/s leading
to standard fixed frame-rate processing,

3. by processing all cepstral dimensions at the maximal
Nyquist rate across dimensions which leads to fixed-
rate processing at a higher rate.

The first approach is the preferable one, since it implies no
redundancy and no loss of in “information”. It is worth
noting that this notion of variable rate processing along
dimensions is different from the standard notion of vari-
able rate processing where the local frame rate is selected
based on the local phonetic unit in question. Since acoustic
models in speech recognizers today assume, from modeling
and practical considerations, fixed-rate signal processing,
we only explore the second approach in this paper. The
last approach is presently unattractive due to increased
computational burden at high frame rates.

Lowpass filtering before down-sampling is a standard
technique to remove distortions due to aliasing. Averaging
or mean filtering is one simple example of lowpass filtering
where a smoothed cepstral stream is generated by taking
an L-point average of the surrounding cepstral vectors in
a high rate cepstral stream i.e.,

m+L

tnm) = 7 3 eal) ©

The final feature stream is obtained by downsampling
ék(m) do the desired frame-rate. A simple extension would
be to use a more general low pass filter with cutoffs suit-
able for the frame-rate in question instead of an averaging

filter. That is,

m+L

éa(m) = Y ex(DA(]) 4)

l=m

Instead of averaging (or filtering) the cepstral trajectories
one could average the spectral trajectories and then com-
pute the cepstrum from it i.e.,

m+L

$(w,m) = % Z S(w, 1) (5)

E(m) = %‘/ log S'(w,m) exp(—jwk)dw (6)
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Spectral averaging is well known as the Welch’s method([3]
in the spectrum estimation literature for reducing the vari-
ance power spectral estimate. Reduction in spectral vari-
ance translates directly into a reduction in the variances
of the Gaussian mixtures used in the acoustic models lead-
ing to tighter models. Reduction in variance can also lead
to better class separability which i1s highly desirable in a
speech recognition system. Smoothing the spectrum or
cepstrum can also result in the reduction of the ill-effects
of noise, especially when the noise is white or in the high
frequency bands. Our work was originally motivated by
these considerations.

It is well-known that the cepstral features (especially
C1) are sensitive to shifts in the speech signal. Cep-
stral/Spectral smoothing alleviates this problem to some
extent.

2.2. Data-driven filtering (LDA)

The variable rate nature of information in the cepstral
trajectories can also be captured by a combination of filter-
ing and increasing the dimensionality of the feature space.
This can be done in the following two ways:

1. by examining the spectral content in each of the cep-
stral trajectories and increasing the number of filter-
banks for that dimension if a significant amount of
energy is outside the original lowpass filter’s passband

2. by sampling the cepstral trajectories at a high rate
and computing an LDA on blocks of this higher rate
stream. The LDA is computed every centisecond to
generate a fixed low rate stream.

The LDA based method has the advantage that it is
purely-data driven. The hope is that some of the LDA di-
mensions capture fast variations in the cepstra while some
others the slow variations in the cepstra. This approach is
similar in principle to DISCO filtering proposed by Aven-
dano et. al. [2]. However, here the analysis window for
LDA is of a shorter duration and furthermore it is done on
a higher frame rate feature stream.



3. EXPERIMENTS

All experiments were conducted on the IBM rank-based
LVCSR system. The IBM LVCSR system uses context-
dependent sub-phone classes which are identified by grow-
ing a decision tree using the training data and specifying
the terminal nodes of the tree as the relevant instances
of these classes [4, 5, 6]. The training feature vectors are
poured down this tree and the vectors that collect at each
leaf are modeled by a mixture of Gaussian pdf’s, with di-
agonal covariance matrices. Each leaf of the decision tree
is modeled by a 1-state Hidden Markov Model with a self
loop and a forward transition. QOutput distributions on
the state transitions are expressed in terms of the rank
of the leaf instead of in terms of the feature vector and
the mixture of Gaussian pdf’s modeling the training data
at the leaf. The rank of a leaf is obtained by computing
the log-likelihood of the acoustic vector using the model
at each leaf, and then ranking the leaves on the basis of

their log-likelihoods.

Results were obtained on two different systems. The
first system was trained on 100 hours of the HUB4 Broad-
cast News data. Overall, the decision tree had 5700 leaves
and the system had approximately 90,000 Gaussians. A
portion (balanced across all conditions) of the 1997 test
set was used as the test set. The baseline results are ob-
tained using feature vectors comsisting of 60 components
derived from 24 mel-frequency cepstral components using
LDA and a global transform. The analysis window was
25ms long and frame-shift was 10ms leading to a rate of
100 frames/s. Next, 24 dimensional cepstral features were
generated at a high rate of 500 frames/s (frame-shift of
2ms). An averaged cepstral stream was generated by an
5-point average followed by downsampling by a factor of 5
(Avg Ceps). Spectral averaged (Welch) and filtered (LP)
features were generated as described in the previous sec-
tion. The lowpass filter was a 9-tap filter designed using a
constrained least squares approach. Frequency responses
of the mean filter and the lowpass filter are shown in Fig-
ure 2. In all cases the same LDA and transform matrices
that were used in the baseline system were used to gener-
ate 60 dimensional features. For each feature stream the
means and the variances of the Gaussians and the transi-
tion probabilities of the HMM’s were re-estimated using a
Baum-Welch procedure.

A histogram of the ratios of the variances of the Gaus-
sians in the baseline system and the system using the aver-
aged cepstra, shown in Figure 3, clearly shows a reduction
in the variances as expected. Results with the different
feature streams are summarized in the Table 1

The averaged cepstra system gave performance improve-
ments in all conditions with an relative improvement of 7%
in the FO (clean, prepared speech). It is notable that low-
pass filtering the cepstra with a strict lowpass filter does
not give better results than averaging the cepstra. This
seems to suggest that aliasing in a reduced form (because
of the large sidelobes in the mean filter) seems better than
throwing away high frequency information altogether. A
similar experiment was conducted on a voice-mail tran-
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scription task. Details of this experiment can be found in

[7].

The effect of cepstral smoothing and filtering on accu-
racy and noise robustness was also studied on a internal
IBM task. It is a speaker independent task using read
speech data recorded in clean environments with the same
microphone. The training data consists of 1670 speakers
with a total of 36272 sentences. The decision tree for this
systems has 2755 leaves with an average of 12 Gaussians
modeling each leaf. The test set consists of 10 speakers
each uttering 61 sentences, giving a total of around 11000
words in the test set. Table 2 summarizes the results on
this test set under clean and noisy conditions. Additive
Gaussian noise was used only during testing.



System Overall | FO F1 F2 F3 F4 F5 FX
Baseline 26.8 13.2 | 23.6 | 32.1 | 28.5 | 28.4 | 24.0 | 44.6
Avg Ceps 26.3 12.3 | 23.5 | 32.0 | 28.2 | 27.8 | 23.8 | 434
Welch 26.6 12.3 | 23.3 | 33.0 | 29.0 | 27.5 | 26.0 | 43.1
LP filter 26.7 13.0 | 23.0 | 324 | 294 | 28.3 | 26.2 | 43.4
Table 1: Word Error Rate on Hub4 Task: F0 - prepared, "
F1 - spontaneous, F2 - telephone, F3 - music in background 6. L. R. Bahl et .al -+ “Performance Of, ffhe IBM large vo-
F4 - noise in background, F5 - non-native and FX - other cabulary cont1nuou§ speech recogl}ltlon system on the
data ARPA wall street journal task,” in Proc., Intl Conf.
on Acoust., Speech, and Sig. Proc., pp. 41-44, 1995.
System 0dB | 15dB 7. M. Padmanabhan, B. Ramabhadran, S. Basu,
Baseline 12.54 | 4457 “Speech recognition performance on a new Voicemail
Avg Ceps | 12.45 | 37.59 transcription task,” Proc. ICSLP’98, Sydney.

Table 2: Comparison of baseline system with cepstral
averaging in additive white Gaussian noise

These results indicate only a slight improvement in
recognition accuracy with the averaged cepstra. Both sys-
tems degrade heavily with noise.

4. CONCLUSIONS AND FUTURE
WORK

This paper addresses the temporal variability in speech
signals that typically suggests the use of variable-frame-
rate processing of speech. We propose the use of spec-
tral/cepstral averaging and faster-rate LDA to account
for the temporal variability with fixed-rate processing.
Smoothing in the spectral domain results in a reduction in
the variance of the short term spectral estimates which di-
rectly translates to reduction in the variances of the Gaus-
sians in the acoustic models. These techniques give modest
improvements in both word error rate and robustness to
noise on some large vocabulary speech recognition tasks.
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