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ABSTRACT

Although most parameters in a speech recognition sys-
tem are estimated from data, the unit inventory and lexi-
con are generally hand crafted and therefore unlikely to be
optimal. This paper describes a joint solution to the prob-
lems of learning a unit inventory and corresponding lexi-
con from data. The methodology, which requires multiple
training tokens per word, is then extended to handle infre-
quently observed words using a hybrid system that com-
bines automatically-derived units with phone-based units.
The hybrid system outperforms a phone-based system in
first-pass decoding experiments on a large vocabulary con-
versational speech recognition task.

1. INTRODUCTION

Large vocabulary speech recognition systems typically
represent lexical entries in terms of sub-word units, for
which acoustic models can be reliably estimated. Part of
the system design is therefore to decide on a suitable unit
inventory and define the mappings from lexical entries in
the vocabulary to linear strings or networks of units (i.e.
define the lexicon). Although the parameters of the unit
models are generally estimated from data using an objec-
tive function such as maximum likelihood, no such func-
tion is used in the unit inventory and lexicon design — the
problem is typically simplified by using phone-based units
and a hand-crafted lexicon. As a result, the unit inven-
tory and lexicon are unlikely to be optimal in terms of
the objective function used throughout the design of the
rest of the system. Furthermore, the standard dictionar-
ies available usually characterize citation-form pronuncia-
tions, which are unlikely to be reflective of the realization
of many words in spontaneous conversational speech.

An alternative to manual derivation of a unit inven-
tory and lexicon is to learn them from data. We will
refer to a unit derived in this way as an Acoustic Sub-
Word Unit (ASWU). A number of researchers have in-
vestigated this approach, e.g. [1, 2, 3, 4], but decoupling
the unit inventory and lexicon design problems, which are
clearly related. This limitation can be addressed by iter-
ative reestimation of the acoustic model and the pronun-
ciations, as in [5]. Another problem is that for speaker-
independent tasks, where there is a lot of variation in the
initial acoustically-motivated labeling of tokens, it is ex-
pensive to determine the optimal pronunciation among the

large number of candidates and difficult to rule out cases
when the vast majority occur only once. Furthermore,
the optimal pronunciation may not even be among the ob-
served candidates if the unit inventory is large, as would be
the case for large vocabulary recognition. Not surprisingly,
most results are reported on small tasks and/or compared
to context-independent phonetic models. To address the
large inventory problem, we proposed a method of joint
lexicon and unit design that imposes pronunciation con-
sistency constraints from the early stages of the design
process to achieve a match between the unit inventory and
the lexicon [6]. Experimental results on the Resource Man-
agement task show performance comparable to or better
than phone-based systems using state-of-the-art clustered
triphone models [7]. However, the approach assumes that
several training tokens are observed for each word in the
lexicon. Thus, as proposed, the algorithm does not ad-
dress the needs of most large vocabulary speech recogni-
tion tasks, where many words in the lexicon are observed
infrequently (or not at all) in training.

This paper describes an extension of previous work that
uses a hybrid system of automatically-derived units to-
gether with phone-based units (clustered triphone states)
for large vocabulary, conversational speech recognition.
The approach combines the advantages of automatically
derived units and pronunciations for frequently observed
words with the generalizability of phonetic units for in-
frequent words. While the longer term goal might be to
develop a technique for automatically deriving units that
are general, it is likely that much of the possible gain is
achievable by a hybrid system. In the Switchboard corpus,
for example, the top 400 words cover 87-88% of the train-
ing corpus in terms of word tokens, and each is observed
more than 100 times.

The remainder of the paper is organized as follows. The
hybrid system design methodology is described in sec-
tion 2, including details about the sub-system design pa-
rameters and issues associated with merging them. Speech
recognition experiments on the Switchboard corpus are
provided in section 3. This paper addresses the prob-
lem of generalization; the remaining problem of pronuncia-
tion variability for automatic unit design on conversational
speech is discussed in section 4.



2. SYSTEM DESIGN

The training of the hybrid system involves first sep-
arately designing a phone-based system on the full cor-
pus and automatically-derived units on the subset of the
corpus covered by the most frequent words. All units in
both cases are represented using a hidden Markov model
(HMM). The training for the automatic unit part of the
system is essentially the same as that described in [6],
but is reviewed in section 2.1 for completeness. Train-
ing for the phonetic unit sub-system, described in sec-
tion 2.2, uses standard data-driven HMM triphone cluster-
ing techniques, with the exception that state tying is un-
constrained (as in the ASWU case). The two sub-systems
are combined in parallel for the most frequent words, then
pronunciations are pruned and reestimated to form the
hybrid system, as discussed in section 2.3.

2.1. ASWU Sub-System Design

The two basic algorithmic steps of all the proposed unit
inventory design algorithms are an acoustic segmentation
followed by a clustering step to define the unit inventory.
The key elements that differ in our approach are the use of
pronunciation-related constraints in both steps of the de-
sign algorithm, as well as the consistent use of a maximum
likelihood objective function.

The first step in designing an ASWU system is acoustic
segmentation, that is, finding segmentation times that
divide each word token into piecewise stationary regions
that can be reasonably well modeled with a single HMM
state.! Unconstrained acoustic segmentation [1] involves
recursive updating for every time ¢t and every allowable
number of segments n:

5(t,n) =max[0(r — 1,n — 1) +logp(@-,. .., Te|pre, D)],

where 7 may have some duration constraints and
p(|ptr,X) is a generalized likelihood computed using a
multivariate Gaussian model with a known diagonal co-
variance X (the grand variance of the entire training cor-
pus). In our implementation, we start with fixed word be-
gin and end times and introduce the constraint of a fixed
number of segments within each word token, where the
number is equal to the median length for that word us-
ing an unconstrained segmentation. (The word boundary
times are provided by a phone-based HMM system.) Us-
ing a fixed number of segments per word is equivalent to
the linear pronunciation model used for the vast majority
of words in most speech recognition systems.

The second step involves clustering the results of the
segmentation step to define the unit inventory. Again a
pronunciation consistency constraint is introduced. Before
clustering, the data is grouped, computing the sufficient
statistics for each collection of segments originating from
different training tokens in the same position within a lex-
ical entry. The sufficient statistics for the Gaussian mean

n fact, the algorithm is not restricted to HMMs and has
also been implemented for polynomial mean trajectory segment
models [3].

model are the sample mean and covariance and the total
number of vector observations contained within the group.
These sufficient statistics are stored for each unique posi-
tion within each unique lexical entry: if there are V entries
in the vocabulary and the median pronunciation length is
R, the data is grouped into V R groups. Clustering involves
a combination of divisive and K-means clustering of these
groups, almost as if they were individual data points. The
sufficient statistic representations of these atomic groups
cannot be split in clustering, thus ensuring the pronunci-
ation consistency.

The clustering algorithm used here also differs from that
used in [1, 5] in that maximum likelihood is used as an ob-
jective rather than minimum Euclidean distance. Specifi-
cally, the repartitioning step involves computing the like-
lihood of segments given the model parameters of a clus-
ter, i.e. a negative log likelihood “distance”. The cluster
reestimation procedure consists of finding the maximum
likelihood parameter estimates of a Gaussian distribution
from the data contained in the cluster. Cluster centroids
therefore directly represent unit models and clustering ad-
dresses both the inventory and model design problems,
whereas in other work unit model parameters had to be
estimated in a separate step from the data partition de-
fined by clustering.

The models derived by clustering are then reesti-
mated to use mixture distributions, using the incremental
mixture-splitting technique described in [8].

2.2. Phone-Based Sub-System Design

A hand-crafted phonetic unit inventory (54 phones) and
lexicon are used for the phonetic part of the system. The
phonetic unit models are left-to-right 3-state HMMs with
a topology allowing the center state to be skipped. The
transition probabilities of these HMMs were kept uniform.
The state emission probabilities were modeled by mixture
Gaussian distributions, with distributions tied using tri-
phone clustering. Parameters for these models were esti-
mated from data by gradually increasing the system com-
plexity, starting from single Gaussian distribution models
for context-independent phonetic units as described below.

First, initial context-independent phone model parame-
ters were estimated from a phone-level segmentation pro-
vided by another speech recognition system. The parame-
ters of these models were then refined using Viterbi train-
ing with the constraint of fixed word boundaries. Next,
the model inventory is increased by explicit modeling of
context at the state level, where the resulting models are
referred to as tri-states. Single Gaussian emission prob-
abilities are estimated for all unique tri-state units by
Baum-Welch reestimation. The system complexity is then
further increased by modeling context at the phone level.
The tri-state system is used to realign the data, and suf-
ficient statistics are computed for states in all unique left
and right phone contexts but ignoring contexts across word
boundaries. These sufficient statistics were then clustered
using combined divisive and K-means clustering with like-
lihood as the objective function, similar to the ASWU gys-



tem. No structure was imposed on clustering, so units are
allowed to share across center phone identity and state
position within the phone models. The cluster inventory
was initialized with the tri-state model inventory derived
previously by the Baum-Welch reestimation. The shared
triphone state distributions are then refined by 3 iterations
of Baum-Welch reestimation. The complexity of the clus-
tered triphone models is then increased by estimating mix-
ture distributions, using the incremental mixture-splitting
technique described in [8].

2.3. Hybrid System Design

The hybrid system integrates the two types of units.
One option for system building is to simply join the two
types of unit systems trained independently. In such a
system, the unit inventory is defined as the union of the
automatic unit and phonetic unit inventories, and the lex-
icon uses automatic units for the most frequent words and
phonetic units for the remaining entries. Although this
approach to the hybrid system design is simple, it has sev-
eral disadvantages. First, the automatic units might pro-
vide more accurate models in comparison to the phonetic
unit word models for some of the most frequent words but
possibly not all of them. To solve this problem, a criterion
is needed to decide whether to include the phonetic or au-
tomatic unit pronunciation in the lexicon. Second, as the
most frequent words are now modeled by the automatic
units, the phone-based units do not need to cover the full
space of triphones and the parameters can be reestimated.
However, eliminating a large portion of the training data
could make the models less general and therefore less ac-
curate on unseen data. Third, as the automatic units were
trained using isolated tokens with fixed word boundaries, it
is likely that embedded training (allowing the word bound-
aries to shift) will result in more accurate model parameter
estimates.

Ag an alternative to simply joining the independently-
trained automatic and phonetic unit systems, a parameter
reestimation step is performed on a parallel version of the
hybrid system. In other words, the most frequent words
are represented with multiple pronunciations: the auto-
matic unit pronunciation and the phonetic unit pronunci-
ation. The estimation step of the Baum-Welch algorithm
is then used to compute two probabilities: the standard
“state occupancy” counts (the probability of being in a
particular state at a particular time given the whole of the
observation sequence), and the “word-initial state transi-
tion counts” (the probability of transitioning into either
the first automatic unit or phonetic unit states of a multi-
ple pronunciation word at any time given the whole obser-
vation sequence). The word-initial state transition counts
are used to estimate the probability of each possible pro-
nunciation, which can be used to weight or to prune the
different pronunciation alternatives for each word. The
state occupancy probabilities can be used to reestimate the
model parameters of either or both types of unit models.
Here, only the ASWU models are estimated to avoid possi-
ble problems associated with triphone model reestimation
from a biased data sample for unseen models. In addition,
our implementation uses pruning rather than weighting, in

which case pronunciations are removed from the lexicon.
Therefore, it is useful to do a second estimation pass with
the single pronunciations.

3. EXPERIMENTS

Experiments were performed on the Switchboard con-
versational speech corpus. The training set consisted of ap-
proximately 120 hours of speech from about 2500 conversa-
tions. Feature vectors consisting of 14 gender-dependent
vocal-tract-length (VTL) normalized cepstral coefficients
and derivatives were available were computed at a rate of
100 vectors per second. The VTL-normalization was per-
formed using a segment level equivalent of the frame level
technique described in [9]. A test set of approximately
30 minutes of speech from 7 conversations was defined.
Gender detection was performed using the likelihoods of
the VTL normalization model. The test lexicon contained
20383 entries, and a bigram language model was used in
decoding. The OOV rate for the test set using this lexicon
was 0.7%.

The phone-based system was trained using the
method described in Section 2.2, resulting in clustered
triphone inventory sizes of 5265 and 5244 for the male
and female system, respectively. The triphone state emis-
sion probability distributions were refined further to 12-
mixture distributions by mixture splitting and Baum-
Welch training. The 12 mixture model inventory was then
used to resegment the training data allowing both phone
state as well as word boundaries to move with up to 400
frames. In addition, at each word boundary, an optional
silence word was allowed to be inserted. The obtained
word level segmentation contained explicit information on
which pronunciation variant was used for those lexicon en-
tries having multiple pronunciations.

The ASWU sub-system was trained as described in
section 2.1, with an initial acoustic segmentation tuned so
that there were on average 3.4 acoustic segments per phone
segment. A total of 3000 automatic unit models/gender
were estimated through constrained clustering. The num-
ber was chosen arbitrarily to be a large fraction of the
phone-based system number, since the models covered a
small percentage of the tokens but a large percentage of
the data that the phone-based models covered. Again,
12 mixture distributions were estimated for the automatic
unit models by mixture splitting and Baum-Welch train-
ing. The parameters were estimated from the word tokens
of the 400 most frequent words, keeping word boundaries
fixed to the times provided by the phone-based system.

For the hybrid system, one Baum-Welch reestimation
pass was performed. A histogram of the pronunciation
probabilities for the automatic unit pronunciations of the
most frequent lexicon entries as estimated by the reesti-
mation pass is given in figure 1, showing that the auto-
matic unit pronunciation is more likely (i.e. a better fit
to the data) for most but not all words. For cases where
there are multiple phone-based pronunciations per word,
there are the same number of automatic unit pronunci-
ations and these probabilities are summed in the figure.



Figure 1: Histogram of estimated probabilities of the
automatic unit pronunciations of the 368 most frequent
words (female).

Results are illustrated for the female models; similar be-
havior is observed for the male models. A pruned lexicon
was then obtained by using the automatic unit pronuncia-
tions when they had combined probability larger than 0.5,
and the phone-based pronunciations otherwise. The au-
tomatic unit model parameters were then reestimated by
another Baum-Welch reestimation pass, but the phonetic
model parameters were held fixed.

Recognition performance on the test set using the 12
mixture phone-based models was 40.0% accuracy. Using
the hybrid system with the pruned lexicon without reesti-
mating the unit model parameters gave a 40.5% accuracy.
After a single pass of Baum-Welch training, the pruned
hybrid models gave a 41.9% accuracy.

4. DISCUSSION

In summary, this paper describes a hybrid system for
large vocabulary speech recognition that combines the ad-
vantages of automatically-derived acoustic units for high
frequency words with the advantages of generalizable
phone-based units for infrequently observed words. Exper-
imental results on the Switchboard corpus show that the
automatically-derived units and associated pronunciations
do indeed give a better fit to the data than phone-based
units, in terms of higher training likelihood and improved
recognition accuracy. The experimental results are on a
first-pass decoding paradigm (word-internal triphones and
bigram language model), and further system development
and experiments are needed to demonstrate improvement
in a more complex, multi-pass decoding system. In our ex-
periments, the phone-based models are based on the full
data set, and are not retrained to reflect the fact that they
are not used for the most frequent words. One unresolved
question is whether there is a performance gain to be had
from retraining or adapting the phone-based models.

For applications involving recognition of spontaneous
speech, a limitation of the algorithm described here is
the assumption of a single linear pronunciation per lexi-
cal item. In spontaneous speech, phone segments can be
modified dramatically and are frequently dropped com-
pletely [10], so that a single linear pronunciation is likely
to be inadequate for representing many words. The prob-
lem is addressed here by pre-specifying multiple ASWU
pronunciations according to whether a word in the lexi-
con had multiple phonetic pronunciations. However, one
would ideally like to learn the pronunciation variants au-
tomatically from data as well, as explored in other ASWU

work [11]. A straightforward extension of the temporal se-
quential unit splitting algorithm to parallel unit splitting
would allow for multiple pronunciations within the context
of unit design with pronunciation constraints, assuming a
redefinition of atomic units. A related problem is the mod-
eling of cross-word phonological affects. which recent work
has addressed by defining multi-word lexical entries with
different pronunciations. Given an algorithm for learning
multiple ASWU pronunciations, it is straightforward to
combine this with multi-word lexical entries and can be
combined with an acoustically motivated definition of the
multi-word set [3].
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