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ABSTRACT

This paper addresses the problem of speech recognition in the
GSM environment. In this context, new sources of distortion,
such as transmission errors or speech coding itself, significantly
degrade the performance of speech recognizers. While
conventional approaches deal with these types of distortion after
decoding speech, we propose to recognize from the digital
speech representation of GSM. In particular, our work focuses
on the 13 kbit/s RPE-LTP GSM standard speech coder.

In order to test our recognizer we have compared it to a
conventional recognizer in several simulated situations, which
allow us to gain insight into more practical ones. Specifically,
besides recognizing from clean digital speech and evaluating
the influence of speech coding distortion, the proposed
recognizer is faced with speech degraded by random errors,
burst errors and frame substitutions. The results are very
encouraging: the worse the transmission conditions are, the
more recognizing from digital speech outperforms the
conventional approach.

1. INTRODUCTION

Nowadays, the extensive use of digital mobile telephony is
opening a wide range of opportunities for designing new
Automatic Speech Recognition (ASR)-based applications,
which benefit from the inherent mobility of these systems.
However, mobility also challenges the ASR systems by
introducing new sources of degradation. The main ones are the
following [1, 2, 3]:

e noisy environment: many different situations (public
places, running cars, etc), hands-free operation mode, etc.;

e speech coder distortion: low to medium bit rate speech
coders (5.6 and 13 kbit/s are the standard half-rate and full-
rate, respectively, in GSM) unavoidably introduce certain
amount of distortion which has a significant effect on
speech recognition performance [2, 3];

e transmission errors: due to the nature of the radio channel
[4]; and

e typical “ad hoc” subsystems/characteristics of digital
mobile telephony networks: such as voice activity detector
(VAD), discontinuous transmission (DTX), or insertion of
comfort noise.

The first of the above-mentioned sources of distortion has been
addressed in many different ways in the context of GSM
environment: speech enhancement, robust parameterizations,
model compensation, etc., with promising results [1, 5, 6].

The remaining types of distortion, however, have not received,
as far as we know, the proper attention. Several studies have
been conducted to quantify the influence of speech coding
algorithms on ASR [2, 3], concluding that the lower the bit rate
is, the more significant the degradation of ASR performance.

In this paper, we investigate the influence of speech coding and
transmission errors on conventional speech recognition systems,
and propose a novel approach to cope with these types of
distortion: recognizing from a parameterization directly derived
from the digital speech representation used in GSM. In
particular, our experiments focus on the full-rate coder [7].

The paper is organized as follows: section 2 briefly presents the
baseline system and the data-base used for the experiments. In
section 3, we describe the procedure to derive a suitable
parameterization from the digitally encoded speech signal. In
section 4, we present the experiment conditions and show the
results. Finally, we draw conclusions and outline future work.

2. BASELINE SYSTEM AND DATA-BASE

For the speech recognition experiments, we use a data-base
integrated by 72 speakers and 11 utterances per speaker for the
ten Spanish digits. This data-base was recorded at 8 kHz and in
clean conditions. In addition, we have digitally encoded this
data-base using the full-rate GSM standard (software freely
available at [8]), so that we have both the clean and the encoded
data-bases at our disposal.

We have divided each data-base in two sets: a training set
consisting of 7040 utterances from 64 speakers, and a test set
formed by the 880 utterances from the remaining 8 speakers.
None of the speakers in the testing set is used in the training
process.

The baseline is an isolated-word, speaker independent HMM-
based ASR system developed using the HTK package [9]. Left-
to-right HMM with continuous observation densities are used.
Each of the whole-digit models contains a different number of
states (which depends on the number of allophones in the
phonetic transcription of each digit) and three Gaussian
mixtures per state.



3. TWO PARAMETERIZATIONS, TWO
ASR SYTEMS

In all of the experiments, we have used a MFCC-based front-
end as parametric representation of the speech signal. The
feature vectors consist of 12 mel-cepstral, one log-energy, 12
delta-cepstral and one delta log-energy coefficients, for a total
dimension of 26.

The essential difference between a conventional ASR system
and the proposed approach is the source signal from which the
parameterization is derived. Thus, we build two ASR systems,
each one starting from a different signal to compute the feature
vectors. The first starts form the decoded speech and proceeds
as usually, while the second starts from the LPC spectrum
previously computed by the full-rate GSM standard encoder.
These two different ways of computing the feature vectors are
described more in-depth in the next subsections.

3.1. Parameterization Derived from Decoded
Speech

In this approach, feature extraction is carried out on the decoded
speech signal, which is analyzed once every 10 ms employing a
20 ms analysis Hamming window, using the HTK package [9].
Twelve mel-spaced cepstral coefficients are obtained using a
FFT-based filter bank with 40 channels. Then, the log-energy,
and the 12 delta-cepstral and the delta-log energy coefficients
are appended.

3.2. Parameterization Derived from GSM
Digital Speech

Since the full-rate GSM coder estimates the LPC spectrum from
clean speech, we propose to take advantage of this clean speech
representation in the front-end of the ASR system.

Recognition from this clean speech parameterization has two
important advantages: first, we are avoiding the speech coding
distortion and second, and more important, we are also
circumventing all the transmission errors that do not directly
affect to the encoded LPC spectrum.

The scheme in Figure 1 illustrates the suggested
parameterization procedure along with the conventional one.
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Figure 1: Parameterization procedures.

Our work, as detailed next, mixes our own procedures with
some facilities of the HTK (HTK Toolkit) package. More
precisely, the trans-parameterization (from LAR to MFCC) is
described in detail through the following steps:

1.  For each GSM frame (20 ms of speech for the full rate
standard) its eight LAR (“Log-Area-Ratio”) coefficients
are extracted. After decoding them, they are converted to
LP coefficients. Note that in this case, we do not overlap
windows, so the number of frames in a certain utterance is
half that in the previous case.

2. A 256-point spectrum of the speech frame is computed
from the LP coefficients.

3. A filter bank composed of 40 mel-scale symmetrical
triangular bands is applied to weight the LP-spectrum
magnitude, yielding 40 coefficients.

4.  The 40 coefficients obtained by the mel-band weighting
are converted to 12 mel cepstrum coefficients (this is done
by the HTK software).

5. A log-energy coefficient is appended. For simplicity, we
have extracted this information from the decoded speech
waveform using HTK, but similar coefficients could have
been obtained from the digital GSM stream directly. The
performances of both approaches have not been compared,
although no significant differences are expected.

6. Dynamic parameters are computed (by HTK) for all the 12
MFCC and the log-energy, so that, a 26-parameter vector
is used to represent each GSM-encoded speech frame.

4. EXPERIMENTAL RESULTS

In order to determine the impact of different types of GSM
distortion in the performance of ASR systems and evaluate the
effectiveness of our approach under these conditions, we have
carried out three different sets of experiments:

e  Training with clean data and testing with GSM decoded
data (labeled as “clean-decoded”). Clean data refers to
speech data without coding.

e  Training and testing with parameterization derived from
GSM decoded data (labeled as “decoded-decoded”).

e  Training and testing with parameterization derived from
LAR coefficients obtained from GSM frames (labeled as
"digital-digital™).

GSM data used for training does not contain transmission
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In addition, a baseline experiment using clean data for training
and testing (labeled as “clean-clean”) has been performed for
comparative purposes.

4.1. Influence of coding distortion

Table 1 shows the recognition results for different training and
test configurations described above. It can be seen from this
table below that full-rate GSM coding does not affect



significantly the recognition rate when there are no transmission
errors. In our opinion, because the RPE-LTP is a coder that was
designed taking in account some perceptually related criterion.
Similar results have been reported in [1]. However, we expect
that using a half-rate GSM codec will markedly decrease the
ASR performance as shown in [2-3].

On the other hand, using the parameterization derived from
GSM digital speech (“digital-digital”) does not decrease the
performance significantly. This approach is thus suitable for
recognition purposes.

TRAINING TEST Recognition Rate (%)
Clean Clean 99.77%
Clean Decoded 99.89%
Decoded Decoded 99.89%
Digital Digital 99.66%
Table 1: Recognition results for different combination of
training and testing conditions.

4.2. Influence of transmission errors

The GSM coding scheme contains several mechanisms to
protect encoded speech from transmission errors due to the
radio interface [4]. When heavy errors are detected, the
damaged frame is discarded and replaced by a previous
correctly-received frame. Nevertheless, non-replaced frames
may contain errors, since some bits of the stream are not
protected.

We have decided to simulate separately both disturbing
conditions, replaced frames and transmission errors, in order to
evaluate their influence on recognition performance.

Frame substitutions

We simulate frame substitution by randomly repeating frames at
different rates. In these experiments, non-replaced frames do
not contain errors. Recognition rates are summarized in Figure
2. It can be seen that performance does not degrade
significantly when the number of replaced frames is not very
high (less than 20 %).
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Figure 2: Performance for different frame substitutions rate.

Random and burst errors

In order to measure the influence of transmission errors on the
ASR system, we have artificially degraded the GSM-encoded
speech with both random and burst errors at different BERs
(“Bit Error Rates”). Nevertheless, there are no frame
substitutions, even when a frame is heavily affected.

Simulating random errors is performed by adding errors to the
GSM coded frames at the bit level. Since such kind of errors
does not describe in a realistic way the transmission conditions
(multipath, fading, etc.) in mobile communications, we have
added burst errors to the GSM-coded frames.

Burst errors are inserted using a simple model [10] composed
by two states, the first one with low bit error rates (P)) and the
second one in which transmission errors are highly probable (P,
>> P)). In normal conditions, the system is in the first state, but
it shifts to the second state when the effect of fading is
randomly simulated. In real GSM communications systems, the
transition probability from state one to state two (P) is rather
low. Figure 3 shows the structure of this model.

Figure 3: Model of burst-errors simulation.

The bit error rate (BER) is computed as follows:

BER=(1—P,)P, + P,P,

In our implementation, we contaminate each frame at the bit
level according to the error probability of the current state.
Skips from one state to another are only allowed on a frame-by-
frame basis.

Figure 4 summarizes the recognition rates for both random and
burst errors at different BERs, that we suppose feasible in
mobile transmissions. In Tables 2 and 3 we compare the
recognition performance in both cases.

BER for Random-Errors
TRAIN. TEST le-3 5e-3 le-2
Clean Decoded 99.55% 96.59 % 90.80%
Decoded Decoded 99.32% 95.91% 90.34%
Digital Digital 99.20% 97.73% 95.23%

Table 2: Recognition rates for different bit-error probabilities
(BER): Random errors.




BER for Burst-Errors
TRAIN. TEST le-3 5e-3 le-2
Clean Decoded 99.09% 93.64% 81.59%
Decoded Decoded 98.86% 92.84% 80.80%
Digital Digital 99.20% 96.02% 90.91%
Table 3: Recognition rates for different bit-error probabilities
(BER): Burst errors.

Results show that, as expected, recognition rate decreases
dramatically when error rate increases. The effect is even worse
for burst-errors, because in this condition, several contiguous
frames can be seriously damaged.
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Figure 4: Recognition rates for both random and burst errors at
different channel conditions.

Improvements are not achieved using GSM decoded speech for
training and testing in the case of transmission errors. Probably,
because the distortion produced by errors is more important
than the distortion of the codec itself.

Our proposed approach ("digital-digital") exhibits higher
robustness to all sorts of BER situations than using the decoded
speech. The reason is that errors in bits non-corresponding to
the LAR coefficients are avoided in this procedure.

5. CONCLUSIONS AND FURTHER WORK

In this paper, we have presented a new approach to ASR in the
GSM environment. Instead of recognizing from the decoded
speech signal, our system works from the digital speech
representation used by the GSM encoder (we have focused on
the full-rate standard).

We have studied the influence of coding distortion and
transmission errors on the performances of the proposed
speaker independent, isolated-digit ASR system in comparison
to a conventional one. And, even though simulations
concerning transmission errors do not represent accurately the
GSM environment conditions, the achieved results allow us to
conclude that the proposed approach is much more effective in
coping with these problems than conventional approaches.

We plan to continue this research by completing our simulation
system to include all the GSM subsystems involved and
extending our results to the half-rate GSM standard.

On the other hand, evaluating the effects of tandemings of
ADPCM and LD-CELP to GSM standards on the recognition
performance will be worthwhile (although only small
degradations can be expected), to take into account phone calls
coming from the fixed telephone network.
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