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ABSTRACT

In this paper a comparative study between One-Class-One-
Network (OCON) and Multi-Layered Perceptron (MLP) neural
networks for vowel phoneme recognition is presented. The
OCON architecture, first proposed by I.C.Jou et al 1991, is
similar in design to a conventional feed-forward MLP, only each
class had its own dedicated sub-network containing a single
output node. Conventional MLPs usually consist of fully-
connected nodes which not only result in a large number of
weighted connections but also create the problem of cross-class
interference. Using vowel phoneme data from the DARPA
TIMIT corpus of read speech, MLLP and OCON architectures
were trained and the relative effects of recognition and
convergence rates during both intra and inter-class adaptation
tested. The OCON showed an increase in the convergence rate
of 273% and an improvement of adapted recognition rates
against the MLP of over 12%. However, due to the isolated
nature of each OCON class, it was unable to utilise inter-class
information. This resulted in a recognition rate reduction of
over 6% for unadapted phonemes during adaptation of
remaining vowels, compared with the MLP results.

1. THE OCON

A large fully-connected network can potentially contain many
hundreds of neurons, each connected via weights to many
others. This can make the training and adapting of such a
network a long and difficult task. In addition, fully connected
networks are prone to cross-class interference. Cross-class
interference occurs when adapting towards a single class in a
multi-class network, inevitably altering shared weights. As the
network gets larger the interference increases, drastically
degrading the convergence rate of the shared weights due to the
influence of conflicting signals. This can lead to, after
adaptation towards a single class, the impaired classification for
the remaining classes within the network. To eliminate these
problems, 1.C.Jou et al [2] proposed a new neural network
architecture called the One-Net-One-Class. The same principle
was later taken on by S.Y.Kung[3][4], who named the
architecture the ‘One-Class-One-Net’ or the ‘OCON’ for short.
The OCON is similar in design to that of a conventional MLP
(see Figure la) only each class has its own dedicated subnet
containing a single output neuron (see Figure 1b). Each OCON
subnet is specialised for distinguishing its own class from other
patterns, resulting in fewer nodes being required in the hidden
layers for each class. 1.C.Jou first used the OCON architecture

in 1991 for optical character recognition (OCR). Later
S.Y.Kung [4] also applied the OCON architecture to OCR,
achieving a training accuracy of 99.5% compared with 94%
from a conventional MLP. Such architectures have also been
used for texture classification, Flectrocardiograph (ECG)
analysis and the classification of mandarin speech syllables and
isolated English words with a hybrid Time Delay Neural
Networks (TDNN) and OCON structure [5].
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Figure 1: (a) A fully-connected MLP architecture.
(b) An OCON Neural Network Architecture

2. THE SPEECH DATA

All the speech data used during the comparative study was
obtained from the DARPA TIMIT corpus of read speech [1].
12 vowel phonemes spoken by male speakers from the TIMIT



dialect region 7, the western geographical area of the U.S, were
used for training and testing the ANN architectures. Vowel
phonemes were specifically chosen since they are the most
spectrally well defined of all phonemes making them more
easily and reliably recognised and ideal for a comparative study.
In addition, to avoid large deviations between phonemes during
the comparative study, phonemes from speakers with the same
gender and dialect were selected. Male speakers from dialect
region 7 were selected because of the availability and good
representation of fraining and testing data available from this
group. However, of the 13 vowel phonemes available, using the
ARPABET representation [6], vowel /UW/ was not used due to
the limited number of utterances leaving the 12 vowel
phonemes, 1Y/, TH/, /EY/, /[EH/, /AE/, [ER/, /AX/, /AH/, [UH/,
JOW/, [AO/, /AA/. During the experimentation it was not only
of interest to test the effect of recognition rates and convergence
on the adapted vowels but also the effect the adaptation had on
the remaining unadapted vowels. Unfortunately, testing the
effects of inter-class adaptation on 12 vowel phonemes is a very
labour intensive procedure and so the phoneme groups were
reduced further. They were split into 3 distinct groups with
respect to the tongue-hump position in the oral cavity during
their production, ‘front’, 'middle’, and ‘back’. They were
grouped in this way since phonemes from the same tongue-
hump group show some acoustic similarities [7]. The front
vowel phonemes were /IY/, /IH/, /EY/, /EH/ and /AE/, the
middle vowel phonemes were /ER/, /AX/ and /AH/, and the
back vowel phonemes were /UW/, /UH/, /OW/, /AO/ and /AA/.
Using ‘Speech Tools’ [8] the relevant phoneme data was
extracted from the recorded 16kHz speech files within the
TIMIT corpus. Each phoneme file was pre-emphasised, to
compensate for the -6db/octave roll-off of voiced speech and
windowed using 8 over-lapping hamming windows, each
representing 16ms of speech. The speech data in each window
was used to generate 12 linear predictive coefficients (LPCs)
which were normalised by dividing by the first. The first
coefficient could therefore be eliminated since it was always
equal to one. This left 11 LPCs for each window resulting in a
total of 8x11=88 coefficients representing each vowel phoneme.
Linear prediction with its simple coding and well documented
behaviour was specifically chosen as the most appropriate form
of speech pre-processing since all experimentation was primarily
concerned with the performance of the ANN architectures.

3. ANN ARCHITECTURES

To test the performance of the OCON architecture on the vowel
phoneme speech data, a comparative study with the more
conventional MLP was set. The OCON and MLP architectures
were represented by three networks each, corresponding to the
“front’, ‘middle’ and ‘back’ tongue-hump groups of the speech
data. For each phoneme group the MLP and OCON networks
(see Figure 2) were modelled using the Stuttgart Neural
Network Simulator (SNNS) [9]. All the networks contained the
same number of input nodes, 88, dictated by the number of input
coefficients representing each speech ufterance. The total
number of output nodes for each network was dependent on the
phoneme group, five phoneme classes for the front and back and
three phoneme classes for the middle. The six networks, with
every node using the sigmoidal activation function, were

modelled with fully connected adjoining layers, except for the
hidden and output layers of the OCON architecture.
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Figure 2: (a) Fully connected MLP architecture.
(b) Fully connected OCON architecture.

Each network was trained with male TIMIT training set from
dialect region 7. The weight and bias values within the
networks were initially randomised and the standard back
propagation algorithm used to train the networks, producing the
six ‘base-classifiers’ necessary for the experimentation. The
male TIMIT ‘test set” for dialect region 7 consisted of 15 male
speakers. Since there was only interest in intra-speaker effects
and not inter-speaker effects, all the speech data from every test
speaker was amalgamated and categorised with respect to its
phoneme content. The networks were then ready for adaptation
and testing, but before that could occur, a single common back-
propagation learning-rate for both the MLP and OCON
networks had to be found. This was achieved by training one of
the MLP and OCON networks with various learning rates. A
learning rate of 0.5 was selected since it offered both networks
fast convergence without any instabilities.

Each of the six base-classifiers was adapted and tested using the
‘test set.” Each network was adapted towards one of its relevant
phoneme classes for a total of 100 cycles, during which 7 result
snapshots were taken at 1, 3, 5, 10, 20, 50 and 100 cycles. Due
to the non-linearity of network adaptation, the number of cycles



between each result snapshot increased to produce a graph that
offered a clear picture of the network’s behaviour. The results
taken at each snapshot were the recognition rates of both the
adapted phonemes and the remaining unadapted phonemes
within the same network. After adapting for 100 cycles towards
each phoneme class, the weights and bias’ within each network
were reset to their initial base-classifier values ready for the next
adaptation procedure involving another phoneme class.

4. RESULTS

Comparative results for the MLP and OCON architectures were
obtained for adaptation towards each of vowel phoneme class
and the effect on the remaining unadapted vowel phoneme
classes within the same networks. 2 graphs were produced
containing the averaged data from all the vowel phonemes for
the adapted and unadapted phonemes recognition rates (see
Figure 3(a)(b)). As well as recognition rates, another area of
interest was each network’s convergence rate. The convergence
rate for each of the 2 averaged data graphs was calculated by
differentiating the recognition-rate data (calculating the distance
between adjacent rates). However calculating the convergence
rate in this way was viewed as being unrealistic since the closer
the recognition rates reach the perfect goal of 100%, the greater
the significance of recognition improvement. To reflect this the
convergence rate y was calculated using equation :
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where , and ¥, are two adjacent recognition rates. The term -
1 in equation 1 was used for normalise the graphs so that
positive values indicated positive convergence and negative
values negative convergence. The 2 convergence rates graphs
were generated were for all the adapted vowel phonemes (see
Figure 4(a)), and all the unadapted vowel phonemes (see Figure
4(b)). Figure 3(a) shows that the OCON networks show a clear
improvement for the recognition rates of adapted vowel
phonemes over the conventional MLP networks. On average,
for all vowel phonemes, the experimentation shows a 12.3%
increase in recognition rates for the OCON networks [10][11].
This result echoes the improvements shown in other data
classification systems utilising OCON architectures [2][3][4][5].
Furthermore, the OCON architecture not only increases the
adaptation rate but also reduces the processing time necessary
for each adaptation cycle due to the reduction in network
weights. This is shown in figure 4(a) with the increased rate of
convergence for each OCON network, offering a 273% increase
against the MLP for adapted phonemes. However, the OCON
architectures as they stand, deal badly with infer-class
adaptation.  Although the rates of convergence for both
networks are roughly the same, figure 4(b), figure 3 (b) shows
that the OCON networks offer worse recognition rates for
unadapted vowel phonemes over the conventional MLP
networks. From figures 3 (b) we find that the average drop in
recognition rates for the OCON networks, compared with the
MLP networks, is 6.3%.
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Figure 3(a): Average Recognition Rates for All Adapted Vowel
Phonemes for an MLP and OCON Network
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Figure 3(b): Average Recognition Rates for All Unadapted
Vowel Phonemes for an MLLP and OCON Network
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Figure 4(a): Average Convergence Rates for Adapted Vowel
Phonemes for an MLP and OCON Network
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Figure 4(b): Average Convergence Rates for Unadapted Vowel
Phonemes for an MLP and OCON Network



5. CONCLUSION

As expected the OCON behaves better than the MLP when
adapting and testing the same phoneme. This is primarily due to
the individual networks in each OCON network being dedicated
to each class. Not only are there fewer connections and hence
weighted axes to train, but each network only has to deal with
information concerning a single class. As a result the OCON
not only reduces the processing time for each adaptation cycle,
but also rapidly increases the convergence rate. However, the
OCON architecture as it stands, deals badly with inter-class
adaptation. When adapting to a class, the OCON shows a lower
recognition rate for the remaining phonemes in the network
compared to that of the MLLP. This indicates that there must
exist some common speaker information within all the classes in
a network which isn’t being exploited in the isolated networks
of the OCON. Although in many applications cross-class
interference can be a problem, MLPs compared to OCONs
appear to use it to their advantage for inter-class adaptation. As
a result an ideal network would be a hybrid OCON architecture
containing isolated networks for improved single class
adaptation but with some inter-class bonding to profit from any
common speaker information. However it would be important
that any hybrid OCON network should concentrate adaptation
only on common speaker information as adaptation towards
common class information could result in harmful cross-class
interference.
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