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ABSTRACT

Consider generating phonetic baseforms from ortho-
graphic spellings. Availability of a segmentation (group-
ing) of the characters can be exploited to achieve bet-
ter phonetic translation. We are interested in building
segmentation models without using explicit segmentation
or alignment information during training. The heart of
our segmentation algorithm is a conditional probabilistic
model that predicts whether there are less, equal, or more
phones than characters in the word. We use just this con-
traction-expansion information on whole words for train-
ing the model. The model has three components: a prior
model, a set of features, and weights of the features. The
features are selected and weights assigned in maximum
entropy framework. Even though the model is trained
on whole words, we effectively localize it on substrings to
induce segmentation of the word to be segmented. Seg-
mentation is also aided by considering substrings in both
forward and backward directions.

1. INTRODUCTION

In many systems such as a speech recognition system
or a spelling to phonetic baseform generation system we
generate an output sequence of symbols (words or phones)
from an input sequence of symbols (acoustic vectors or
characters). Typically, the symbol spaces are different and
the lengths of the input and output sequences are differ-
ent. Here, unlike in a natural language translation system,
segments of input symbols are chronologically aligned to
segments in the output sequence. Clearly, segmentation of
one stream is induced by the other stream.

One of the goals in these systems is to discover the seg-
mentation in the input symbol stream which can be ex-
ploited in the generation of the output sequence. For ex-
ample, in the phonetic baseform generation problem, we
would like to generate the segmentations “d ou bt f u 1l
y”, “th o r ough”. Even though the output sequences in-
duce the segmentation on the input sequences, we do not
have the output sequence available during segmentation
of a given input sequence. We are interested in building
segmentation models without any explicit segmentation or
alignment information in training data. We restrict our
attention to the specific problem of segmentation of or-
thographic spellings that can later be used for phonetic
translation. There are many ways to generate segmenta-

tion and phonetic translation, e.g., see [1] - [2]. We are
interested in building models using as little detailed infor-
mation as possible.

We start with a corpus of pairs of words and their pho-
netic baseforms. We then create a training data of (history,
future) pairs. History is a full word, and future is whether
there are more, equal, or less phones in the phonetic base-
form. That is, the future space consists of just three sym-
bols: {—1,0,1}. This is a macro-level description of the
phonetic translation data: the training data indicates only
whether or not there is a contraction, but not how many
contractions or where they occur. The same is true for ex-
pansions. Sometimes, a word can contain one contraction
that is offset by an expansion; e.g. the word “excess” has
an expansion due to “x”(as K S) and a contraction due to
“ss”. The macro-level information is that there is neither a
contraction nor an expansion for this word. However, our
goal 1s to discover the local expansion and the contraction
to induce the segmentation “e x ¢ e ss”.

The idea 1s to use such a simple global description to
effectively deduce local details such as segmentation, and
if necessary even alignments. We first build a probabilistic
model to predict one of the three futures, given a string of
characters. This model, described in the next section, pre-
dicts whether there is a contraction or not in any substring
of the word. The goal is to use it on many substrings to
locate the contractions in the full word. The novelty of
this work is that we train the model on full words, but use
it on substrings of a given word to induce segmentation of
the word.

There are two issues: 1. expansions and contractions
mask each other in a string. 2. From the model’s point
of view, multiple contractions appear as one, perhaps with
stronger probability. The number of contractions cannot
be inferred from the value of the contraction probability

of the full word.

The crux of the problem lies in effective localization by
a proper choice of substrings of the word as the condition-
ing variable for the model. In this paper, we present an
approach to localization and give initial results.

2. THE CONTRACTION MODEL

Our goal is to build a conditional probabilistic model
to predict if there are more (expansion), less (contraction)



or equal number of phones than characters in the ortho-
graphic spelling. In this conditional model P(f|k), the
history h is the sequence of input characters and the fu-
ture, f is either 0, 1 or -1.

Our conditional model, P(f|h), has three components:
a fixed prior probability model, Po(f|h), a vector of binary
feature functions, ¢(f, k), and their corresponding weights,
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P(f|h) = Po(f|R) (1)

The prior model captures prior knowledge, if any. If there
is no prior knowledge, one can set the prior to be uniform.
Given a set of features, A is chosen to maximize the like-
lihood of a training corpus, using the Improved Iterative
Scaling algorithm [3]. If the prior is uniform, the optimal
model also maximizes conditional entropy subject to the
constraint that the model’s expectation of the feature vec-
tor matches that of the empirical distribution. QOur prior
is uniform. Features themselves are also selected based on
their contribution to the likelihood.

We next describe the training data creation, and feature
creation.

2.1. Training data

We obtain our training data from a corpus of matched
pairs of input and output symbol sequences without ex-
plicit segmentation or alignments. In the baseform prob-
lem we have a corpus of orthographic spellings and their
phonetic baseforms. From this corpus we generate train-
ing data as (history, future) pairs. Here, history is the
orthographic spelling and future is 1 if the number of in-
put characters is greater than the number of phones, -1 if
the number of input characters is less than the number of
phones and 0 else. We have about 30000 such pairs in the
training data.

2.2. Features

For simplicity we consider only binary-valued feature
functions here. Features map (history, future) pairs to 0
or 1 and are essentially questions on presence of character
n-grams in the history and whether the future is 1 or -1.
The features are automatically generated by considering
combinations of all futures with all character n-grams with
count 3 or more. We have about 12000 features in the pool.
We start with the uniform prior and rank each feature in
the pool by its contribution to the likelihood on the train-
ing data. We add the top 2 features to the current model
and train the resulting model. We then rank the remain-
ing pool with respect to the current model and add top 2
features to the model. This iterative feature selection is
continued until the relative contribution of the additional
features is insignificant. Some of the top features selected
are displayed below, along with their weights.

Char n-gram | Future o
ng contraction 11
11 contraction 47
ch contraction 73
th contraction 42
ex expansion 37

3. SEGMENTATION PROCEDURE

Segmentation means breaking up the given word into
groups of consecutive characters. This is equivalent to in-
serting spaces at appropriate positions in the word. How-
ever, we can also view segmentation as locating contrac-
tions in a (space-separated) stream of characters compris-
ing the word. The contraction model can predict the prob-
abilities of expansion and contraction for any substring
of the word. A typical contraction probability profile on
substrings of increasing length from the left for the word
“faithfully” is shown in Figure 1 (solid line). That is,

the solid line displays the contraction probabilities for “f”,
“fa”, “fa1”, and so on.
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Figure 1: Contraction probability profiles

Clearly, the model predicts the contraction “ai”; how-
ever, the contractions “th” and “lI” cannot be so easily
deciphered from the profile. This is the case of multiple
contractions appearing as one. The increase in contraction
probability after the first contraction can be very small.
We solve the above problem by discarding the characters
leading upto the previous contraction from the condition-
ing variable of the model. In the figure, the dashed line is
the profile of contraction probabilities obtained this way.
That is, the dashed line displays the contraction probabil-
ities for “f”, “fa”, “fai”, “it”, “ith”, “hf” and so on. The
modified contraction probability peaks are at positions 3,
5, 8, and 9. If we place contractions at these positions we
get the segmentation “f ai th f ull y”. There is a spurious
contraction between ’u’ and I’

Locating contractions using the contraction probability
profile computed in the forward direction only is prone



to error. We reduce these spurious contraction errors by
validating contractions proposed as above with those pro-
posed by a contraction profile computed in the backward
direction. The backward profile is computed on substrings
“y” (plotted at position 10), “ly” (position 9), “ly” (8),
“ul” (7), “ful” (6) and so on. This is shown as a dotted
line in Figure 1. Using the common contractions proposed
by the profiles, we get the correct segmentation “f ai th
ull y”. We also ensure that expansions do not mask con-
tractions by similarly discarding characters leading upto
the previous expansion from the conditioning variable of
the model.

4. RESULTS

The data 1s divided into four parts. Training data con-
sists of about 30000 events, held-out data of 100 events,
development data of 1000 events, and test data of another
1000 events. While training data does not have any seg-
mentation information, all the words in held-out, develop-
ment, and test sets are segmented by hand. The develop-
ment data also contains the contraction-expansion infor-
mation for each of the words.

The basic contraction model predicts the future
{—1,0,1} with an accuracy of 93.8% at the word level on
the development set.

The held-out set was used to select appropriate thresh-
olds to determine contraction, and to discard characters
based on contraction probability. The same thresholds
were used subsequently for models of all sizes.

The segmentation performance is reported using the
standard miss and false-alarm rates. The total error rate
(TER) is the ratio of sum of misses and false alarms to the
number of all possible errors.

The performance on the development set of models of
various sizes (number of features) is shown below.
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Figure 2: Miss, false alarm, and total error rates

We selected the model with 120 features as our preferred
model (M120). We also used it to segment using only the
forward contraction probability profile and also using only
the backward contraction probability profile. The results
on the development set are shown below:

Direction Miss FalseAlarm TER
Forward Only 4.06 23.5 5.91
Backward Only 4.0 17.92 5.18
Both 1.7 22.0 3.97

We used M120 to segment the test set. The results
are shown below along with those of a few other schemes.
One scheme (Gem) simply segments at each character ex-
cept between geminations. Another (Rand) segments ran-
domly. The third (Rules) is a rule-based segmenter with
about 30 rules.

Model | Miss FalseAlarm TER
Rand 15.9 83.4 22.6
Gem 0.03 75.6 9.8
Rules 0.33 9.75 1.5
M120 1.85 21.1 4.1

5. CONCLUSIONS

We considered building a segmentation model based on
as little detailed information in training data as possible.
The segmentation algorithm presented here uses a basic
contraction-expansion prediction model that is developed
in maximum entropy framework.
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