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ABSTRACT

In this paper, we describe our work on the field of confidence
measures for HMM-based speech recognition. Confidence mea-
sures are a means of estimating the recognition reliability for
single words of the recognizer output. The possible applications
of such measures are manifold. We present our experiments with
well known approaches and propose some new ones. Particularly,
we propose to combine the mere acoustical measures with lan-
guage model-based ones for continuous speech recognition that
involves a stochastic language model. This slightly improves the
acoustical measures and preserves their advantage of being com-
putationally very cheap. Experiments are carried out on a Ger-
man isolated word recognition system and on continuous speech
recognition systems for the Resource Management database and
the Wall Street Journal WSJO task.

1. INTRODUCTION

Word-based confidence measures for speechrecognition based on
hidden Markov models (HMMs) have for some years now been
an important research topic. While in the beginning the main in-
terest was to detect out-of-vocabulary (OOV) words and recog-
nition errors in isolated word recognition and to use them as dia-
gnostic tool [2], several new applications of these measures arose
in the more recent years. Such as adjusting the degree of unsuper-
vised online adaptation or guiding the decoding search by scaling
the language model with the previous words’ confidence for a re-
duced word error rate [5].

For a word w within the boundaries ¢ and b (utterance of w is
hypothesized to have caused the acoustic observation X, =
(zq, ..., xp)), a word-based confidence measure can be defined as
function ¢(w, a, b) with a usual domain of [0, 1]. The higher this
function is for a hypothesized word and its hypothesized bound-
aries, the more confident one can be that it really has been uttered
within the interval.

Often, the confidence measure of a word w, hypothesized for
an acoustic observation sequence X = (z1, 2, ..., %), is dir-
ectly interpreted as the word’s posterior probability P(w|X).
However, especially in continuous speech recognition, the con-
fidence of a word whose position has been hypothesized as the
interval [a, b], is often understood as an estimate of the probabil-
ity that the word starts somewhere around a and ends somewhere
around b. In this case, the interpretation as mere posterior probab-
ility P(w|Xqs) is inadequate. Nevertheless, confidence measure
and posterior word probability are strongly related.

This paper first presents the basic approaches for measuring the
word-based recognition reliability and then outlines some of the

special techniques that we use, discusses how to measure the qual-
ity of confidence measures and concludes with several experi-
ments for isolated word and continuous speech recognition.

2. CONFIDENCE MEASURES BASED ON
THE ACOUSTIC MODELS

Conventional HMM-based speech recognizers choose the word or
word-sequences W with the highest posterior probability estim-
ate P(W|X) for an observed acoustic observation X. P(W|X)
is split up into M’%}%@ where P(X|W) is modeled by se-
quences of HMMs, P(W) by stochastical language models or
finite grammars and P(X) is a scaling factor that can be omit-
ted because it does not depend on W. In order to transform the
HMM-based likelihoods into posterior probabilities that can be
interpreted as confidence measures, Bayes’ rule can be applied.
For a word w hypothesized for the interval [a,b] this yields:

P(Xap|w) Pw)

c(w,a,b) = P(w]|Xap) = P(Xab)

M
Neglecting the word priors P(w) (in case that we have a model for
them, we will discuss how to incorporate this later) the confidence
measure becomes the observation likelihood for the hypothesized
word (the score estimated by the recognizer) weighted by an un-
conditioned observation likelihood.

2.1. Estimation of the unconditioned observation
likelihood

The unconditioned likelihood P(Xq4) can be modeled in several
ways. In ordinary continuous or tied continuous systems there is
no dedicated model for this likelihood. However, with estimates
P(s) for the HMM states’ priors, the unconditioned probabilistic
distribution function p(z) can be estimated as the weighted sum
overall the S states’ probabilistic distribution functions according
to

p(x) & Y p(elsi)P(si) @

The state priors P(s) can be easily estimated on the training data
or on the vocabulary. In [7], we showed how Eq. 2 simplifies
for several kinds of systems and how to approximate it in others.
Especially in discrete and tied continuous systems the additional
computation of p(z) turns out to be computationally very cheap.
The unconditional likelihood of a sequence of observation vectors
can then be estimated as

b
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with tav representing an average transition probability.

2.2. Phoneme-based measures

For the detection of OOV words, Asadi et al. [1] proposed to
weight the hypothesized word’s likelihood against the one of an
unconstrained model sequence. The idea is that for OOV words
there must be a better fitting sequence of phones p* than the one
found, that simply is not part of the dictionary. Hence, they used
the quotient

P(Xap|w)
P(Xablp*)
to decide, whether the hypothesized word w is correct or not.
Young [10] extended this approach by applying additional prior
probabilities for phone sequences estimated using a (tri)phone-
trigram.

The likelihood p(Xas|p*) of an arbitrary phone sequence can be
estimated with ordinary speech recognizers using a so-called 2+-
Model [1], a network that allows any sequence of at least two
HMMs without any constraints on the sequence priors.
Observations showed that often it is only one or at most two phone
models within an incorrectly hypothesized word, that produce an
extremely bad likelihood score. They get squeezed inbetween
phones, where they simply don’t occur, in order to let at least the
other models fit well. In order to cope with this observation, sev-
eral approaches have been followed. In [9], each phone’s confid-
ence is estimated separately and the words’ confidence is com-
puted as the average over all the phones. This results in a normal-
ization over the phone duration. It puts more emphasis on short
phones than the previously presented measures. Another possibil-
ity to compensate for the described observation is to set the words’
confidence to the minimum confidence among its phones.

c(w,a,b) = (@)

c(w,a,b) :=min cp,p, (p) ®)
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In the equation above, p, and p; represent the phone boundaries
of phone p hypothesized by the speech recognizer. Some experi-
ments using this technique are presented in Section 5.

3. CONFIDENCE MEASURES FOR
CONTINUOUS SPEECH RECOGNITION

In continuous speech recognition measuring word-based confid-
ence mainly faces two additional problems compared to isol-
ated word recognition. On the one hand, the hypothesized word
boundaries are often incorrect. Ideal substitutions with correct
word boundaries (but an incorrect word hypothesis) are rather
rare. On the other hand, recognition is based not only on the
Markov models’ probabilistic distribution functions, but also on
a language model that limits the possible word sequences (word-
pair grammars, finite grammars) or estimates each word se-
quence’s prior probability (stochastic language models, n-grams).

3.1. Measures based on the response of the recog-
nizer

A very straightforward approach for measuring confidence in con-
tinuous speech recognition is to consider the speech recognizer
as a black box, that we cannot or want not look inside, but to
let it generate multiple hypothesis and to take the words’ *emis-
sion’ probabilities as their confidence measure. The multiple hy-
pothesis can be set up in various ways. In [3], Finke et al. pro-
posed to perform multiple recognition procedures applying differ-

ent scaling factors for weighing the language model based like-
lihoods against those based on the acoustic models. In [4], this
was compared to the somewhat cheaper alternative of simply tak-
ing the N-best or lattice-output of only one recognition procedure.
No severe differences to the scaling factor approach have been
measured. The multiple recognizer outputs are usually stored in
word-lattices [4] or N-best lists. This approach provides very use-
ful confidence estimates. (Often, these estimates are even con-
sidered as reference for other approaches.) However, this method
that is only based on the output of the speech recognizer is ex-
tremely expensive with respect to computational time needed for
decoding. Thus, for real-time applications, such as dictation or
dialogue-systems, methods which do not require additional de-
coding computations are desirable.

3.2. Model-based measures

Confidence measures that only need little additional computa-
tion consider the statistical models themselves. In the following,
measures that use the acoustic hidden Markov models, the lan-
guage model and those that aim to combine them are discussed
separately.

3.2.1.

Confidence measures for continuous speech recognition merely
based on the acoustic hidden Markov models have been investig-
ated in [9] for hybrid speech recognizers. It turned out that there
is a noticeable degradation of these measures compared to the
lattice-based ones described in the previous section. We exper-
ienced the same when applying the acoustical confidence meas-
ures described in Section 2 for hypothesized words of a continu-
ous speech recognizer. Experiments can be found in Section 5.
These measures neglect the language model and can hardly cope
with the fact that often the acoustic match is fine but the hypothes-
ized word boundaries are wrong. Therefore, in the following we
describe our approach to improve the acoustic model-based meas-
ures by the incorporation of language model information.

Measures based on the acoustic models

3.2.2. Measures based on the language model

As a mere language model based confidence measure we pro-
pose to use an n-gram score weighted by the previous words’ con-
fidence. In the bigram case, this is formulated by

Cim(w2) = Cin (w1)pei(wa]wr) + (1 = Cip (w1))puni (w2)6
(6)
for the hypothesized word w, succeeding the hypothesized word
wj. Another possible measure that we made use of is the product
of the specific word’s likelihood and its reverse likelihood (the
language model likelihood of the succeeding word). In the bigram
case, this yields

Cin (w2) = p(waz|w1)p(ws|ws) Q)

for the hypothesized word w, between the words w; and ws.

The results of experiments with these measures (Egs. 6 and 7)
without any acoustical information are given in Section 5. They
show that the measures contain little but at least some information
on whether a hypothesized word is correct or not and motivate the
combination with an acoustical measure, described in the follow-
ing paragraph.

3.2.3. A combination of acoustic and language model-based

measures

Combining multiple features to result in only one metric can be
accomplishedin many ways. Neural Networks are a common tool



for deriving such a function from training data. In [4, 6], several
features were combined this way for measuring the word-based
confidence. As we only want to combine two measures, an acous-
tic and a language model-based one, the product of these two is
sufficient. Unfortunately though, just as in continuous speech re-
cognition when combining language model and acoustic model
likelihoods, a scaling factor s has to be introduced to cope with
the different scale and quality of these measures. Thus, the com-
bined confidence measure becomes

C(w) = Cac(w)Cp(w)* ®)

with Cac(w) representing one of the acoustical measures defined
in Section 2.

As the measure based on the language model that was defined in
Eq. 6 uses the previous words’ confidence, the language model
based measure C};, can be refined by referring to the combined
measure recursively so that in the bigram case Eq. 6 becomes

Cln (w2) = C(w1)pri(wa|wr) + (1 — C(w1))puni(w2). (9)

We measured some improvement using this combined measure
over the acoustic ones, but there still is a remarkable gap to the
measures derived from the recognizers lattice response (see Sec-
tion 5). However, it has to be considered that the proposed meas-
ure can be computed very efficiently and thus allows real-time ap-
plications.

4. ASSESSMENT OF CONFIDENCE
MEASURES

The quality of confidence measures largely depends on the task
that they are set up for. A metric proposed by NIST is the relative
entropy as described for example in [4]. It measures the amount of
information that the confidence measure contains on the correct-
ness of the hypothesized words. The disadvantage of this measure
is the need for a transformation of the confidence measure to the
interval [0, 1] and to an average of the recognizer’s correctness in
order to be interpreted as posterior word probabilities. This af-
fords the knowledge and incorporation of this correctness figure
and allows an additional degree of freedom in scaling that directly
effects the metric.

Therefore, we concentrated our experimental work and evaluation
on the classic confidence measure application of detecting recog-
nition errors. A meaningful diagram plots the amount of correctly
hypothesized words that are falsely rejected (false alarms) against
the amount of undetected errors depending on a specific rejec-
tion threshold. An interesting figure is the minimum percentage
of falsely rated words with an ideal rejection threshold. In [6], this
metric is called the classification error (CER). In the following ex-
periments section we mainly use these types of evaluation. It has
to be noticed, that the absolute value of the CER largely depends
on the evaluated system’s recognition performance. Hence, the
CER may not be compared over different recognition systems.

5. EXPERIMENTS AND RESULTS

A first set of experiments was run on a 1000 word German isol-
ated word recognition system. The acoustic models of this system
have been trained on the Verbmobil spontaneous speech database.
Figure 1 displays the ratio of false alarms and undetected errors
for different detection thresholds for the various confidence meas-
ures presented in Section 2. It is obvious that the phone-based
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Figure 1. Confidence measures for isolated word recognition

100 $8— T T T T T T T T
= Normalized likelihoods —~—
90 K o Average phone confidence —+-- 4
k ‘" Arbitrary phone sequence -8--
3 Recognizer N-best output -
80 | ) o E
_ 70 L \\El\ |
) )
® LRy N
5 60 -
©
E 50 |- N \E‘\ E
|15} RAYON N
2 4L -
3 AN o,
£ X,
- . N )| E
30 N +\\ \
L ™ . ]
20 T R o
10 F P T o A
~m
0 ] ] ] ] ] ] ] ] =

0 10 20 30 40 50 60 70 80 90 100
False alarms [%]

Figure 2. Continuous speech (RM) without grammar

measures (Egs. 4 and 5) outperform the mere normalized likeli-
hood (Eq. 1 with Egs. 2 and 3). The strong degradation of the
normalized likelihood measure is probably mainly due to the large
amount of OOV words in the test set the results are based upon.
Half of the words in the test set are OOV which causes an error
rate of about 55%. The CER of the two phone-based measures is
around 24%. Confidence measures applied on continuous speech
recognition can be seen in Figures 2, 3 and 4. They were set up
on tied continuous (tied according to [8]) context-dependent (tri-
phone)recognition systems for the Resource Management task (2,
3) and the Wall Street Journal WSJO task (4). In Figure 2, recogni-
tion was performed without any constraints on the sentence priors.
The recognition correctness of this system is at about 65%. It is
interesting to see that the measure based on Eq. 4 performs just as
bad as a random confidence measure would. It seems that hardly
no phones are misclassified, but that it is mainly the segmenta-
tion into words that is often wrong. Furthermore, it is remarkable
that in this case of having an unconstrained recognition grammar
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Figure 3. Continuous speech (RM) with word-pair grammar

100 T T T T T T T T T
' Normalized ac. likelihoods —-—
90 K@ Recognizer N-best output —+-- 4
RSN Weighted LM likelihood (Eg. 6)
'#.\ X B Forward- Backward LM likelihood (Eq. 7
80 \'A P | Combined (Norm. Ac. + FB-LM) —~- 7
_ 0k .
Fad
n -
§ 60
©
o 50 —
L
(o]
@
o 40 4
©
5
30 -
20 A
10 A
0 ;\\+“rF*+——|+

40 50 60 70 80 90
False alarms [%]

Figure 4. Confidence measures on the WSJ0 database

the normalized likelihood measure nearly achieves the same per-
formance as the measure that is based on the multiple recognizer
outputs. The CER of these two measures is at about 27%.

Figure 3 displays the same measures for a recognition system that
is enhanced by the standard RM word-pair grammar. The system
achieves a correctness of 93% (the test set from September 92
was used). It can be noticed that the quality of the diverse meas-
ures strongly differs from the no-grammar case. As expected, the
N-best list based measure now outperforms the other measures by
far (CER =2 6%). It is the only measure that (indirectly) takes both
statistical models (acoustic HMMs and language model) into ac-
count. According to the observation in the no-grammar case the
best acoustic confidence measure is the mere normalized likeli-
hood. Phoneme-based measures only seem to be of good use in
isolated word recognition.

The combination of language model and acoustic model-based
measures, as proposed in Section 4, was evaluated on the WSJO
database. Figure 4 shows the chart. Is is obvious that the lan-

guage model-based measures are weak but hold some information
at least. The Forward-Backward measure of Eq. 7 outperforms
the weighted likelihood of Eq. 6. When combined with an acous-
tical measure, it remarkably improves this measure (CER = 9%).
However, the measure based on multiple recognizer outputs (CER
= 8%) cannot be outperformed.

6. CONCLUSION

The experiments have shown that confidence measures that only
rely on a portion of the statistical models will always degrade
against others that involve all of them. While for isolated word
recognition phone-based measures give best results, in continu-
ous speech recognition we measured the best performance with
a simply weighted likelihood measure enhanced by the language
model confidence measure. However, this still degrades strongly
against the lattice-based measure. Nevertheless, it is lots cheaper
to compute and thus useful even for real-time applications.

7. REFERENCES

1. A. Asadi, R. Schwartz, J. Maakhoul: ”Automatic Detection of
New Words in a Large-Vocabulary Continuous Speech Recog-
nition System”, ICASSP’90, pp. 125-128.

2. E. Eide, H. Gish, P. Jeanrenaud, A. Mielke: ”Understanding
and Improving Speech Recognition Performance through the
use of Diagnostic Tools”, ICASSP’95, pp. 221-224.

3. M. Finke, T. Zeppenfeld, M. Maier, L.. Mayfield, K. Ries, P.
Zhan, J. Lafferty, A. Waibel: ”Switchboard April 1996 Evalu-
ation Report”, DARPA 1996.

4. T. Kemp, T. Schaaf: "Confidence Measures for Spontaneous
Speech Recognition”, ICASSP’97, Munich, pp. 875-878.

5. C. V. Neti, S. Roukos, E. Fide: ”Word-based Confidence
Measures as a Guide for Stack Search in Speech Recognition”,
ICASSP’96, Munich, pp. 883-886.

6. M. Weintraub, F. Beaufays, 7Z. Rivlin, Y. Konig, A. Stolcke:
”Neural-Network Based Measures of Confidence for Word Re-
cognition”, ICASSP’96, Munich, pp. 887-890.

7. D. Willett, C. Neukirchen, G. Rigoll: “Efficient Search with
Posterior Probability Estimates in HMM-based Speech Recog-
nition”, ICASSP’98, Seattle, pp. 821-824.

8. D. Willett, G. Rigoll: ”A New Approach to Generalized Mix-
ture Tying for Continuous HMM-Based Speech Recognition”,
EUROSPEECH 97, Rhodes, pp. 1175-1178.

9. G. Williams, S. Renals: ”Confidence Measures for Hy-
brid HMM/ANN Speech Recognition”, EUROSPEECH 97,
Rhodes, pp. 1955-1958.

10. Sheryl R. Young: “Detecting Misrecognitions and Out-Of-
Vocabulary Words”, ICASSP’94, Adelaide, pp. I 21-24.



