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ABSTRACT

In the context of command-and-control applications, we exploit
confidence measures in order to classify single-word utterances
into two categories: utterances within the vocabulary which
are recognized correctly, and other ufterances, namely out-of-
vocabulary (OOV) or misrecognized utterances.

To this end, we investigate the classification error rate (CER)
of several classes of confidence measures and transformations.
In particular, we employed data-independent and data-dependent
measures. The transformations we investigated include mapping
to single confidence measures, LDA-transformed measures, and
other linear combinations of these measures. These combinations
are computed by means of neural networks trained with Bayes-
optimal, and with Gardner-Derrida-optimal criteria.

Compared to a recognition system without confidence measures,
the selection of (various combinations of) confidence measures,
the selection of suitable neural network architectures and train-
ing methods, continuously improves the CER. Additionally, we
found that a linear perceptron generalizes better than a non-linear
backpropagation network.

1 Introduction

In this paper, we address the problem of confidence estimation
for isolated, speaker-dependent word recognition based on hid-
den Markov models. With an increasing number of users of
command-and-control applications with speech input, the need
for reliable speech recognition also increases. When the speech
input is recognized reliably, the need to verify a speaker’s input in
a dialog structure diminishes. Therefore, the aim of this work is
to judge the word recognition result and to determine whether we
have to ‘accept’ or ‘reject’ this result. This decision is based on
speaker-independent, speaker-dependent, and word-specific con-
fidence measures. We do not apply elaborate garbage models but
investigate the performance of several classes of confidence mea-
sures and transformations. We investigate novel combinations of
data-dependent confidence measures leading to a very effective
and efficient classifier.

In the literature, we find a number of confidence measure real-
izations related to the acoustic model, the search process and the
language model. Examples of confidence measures applied to the
acoustic model are [2, 10], to the decoding process [4], and to

language model and word graphs [6, 9, 13]. It is possible to com-
bine several confidence measures of the same and/or neighboring
word hypotheses to solve the decision problem as demonstrated
by [3, 6, 10, 11]. However, complex combination strategies do
not significantly outperform simpler linear feature combinations

[6].

In Section 2 and 3, we introduce the procedure to arrive at the
best classification given the model parameters. Section 4 and 5
introduce the experimental setup and results, respectively. Finally,
we draw conclusions in Section 6.

2 Best classification with given model
parameters

We address the following question: after selecting the set of raw
input parameters X (see following sections), can we define a clas-
sifier for utterance verification f(X') and a threshold 7 such that
the condition f(X) < 7 will classify into class ¢ = 0 (rejection),
and otherwise ¢ = 1 (acceptance)?

We shall treat this problem in the framework of probability den-
sity functions P(.) and conditional probability density functions
P(.|.), where it is understood that these functions are not known
to us but that our aim is to reproduce them, using the samples at
our disposal. It is clear that the decision boundary f(X) = 7 will
ideally, after Bayes’ decision rule, have to be equal to the Bayes
posterior decision boundary P(c = 1|X) = P{c = 0|X) = 0.5,
with the Bayes posterior probability P{C|X) of class C given the
observation X . We take into account the possible presence of out-
liers and misclassifications in our training set and will therefore
experiment in Section 3 with a careful adjustment of the decision
boundary f(X) = 1.

A general nonlinear function can be realized by a Multilayer Neu-
ral Net architecture which in principle is known [7] to be able to
model arbitrary functional forms. However, it is also known [1]
that more detailed functional approximation may lead to a loss in
generalization ability. In order to check these competing effects
for the specific problems discussed here, we performed experi-
ments with multilayer networks in Section 5.4. We indeed found
that the training data could be matched excellently, albeit only
with a loss of generalization ability. Therefore, we have indica-
tions that linear functions f indeed outperform nonlinear ones.



In order to deal directly with the functional forms of f(.), we
adopt a vector notation. A particular sample from the set of
raw input parameters X will be the vector X 4. For a linear
functional form of f(.), we can first of all include the thresh-
old in f(.) simply by augmenting X, with a constant 1 to give
X = (X aw, 1). The decision boundary f(X) = 7 is then equiv-

alent to @ def J-X = 0, where we have to find the components
of J. Note that in this formulation we do not attempt to model
P(C|X), but just the Bayes posterior decision boundary follow-
ing from P(C|X).

The following discussion is stimulated by [1]. Let us first of all
show under which conditions the Bayes posterior ditribution can
be modelled as a function of a. Using Bayes theorem, it can be
seen as follows that the Bayes posterior can be written in the sig-
moid form
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We now assume that the class-conditional densities p(X|C') are
members of the exponential family of distributions with common
non-linear dependance of the exponents on X, and individual
linear dependance on X .. Bernoulli and Gaussian distribu-
tions are special cases of members of this family. Inserting the
functional form of these class-conditional densities into (2), we
indeed obtain @' =J - Xpqoy — 7 = a.

We have therefore established that the use of a sigmoid form (1),
with e = J- X, always applies given the stated functional form of
the class-conditional densities. Since the latter is only a very mild
restriction, our ansatz is correct under rather general conditions.
However, we shall later see that fine-tuning of the result can lead
to better generalization which can be interpreted as an artefact of
these assumptions only applying approximately in our test cases.

Since we are only interested in classification, we may apply di-
rectly from (1) the decision boundary @ = 0, i.e., we never actu-
ally need to compute the posterior probability. Note however that
this computation can become useful if training and test scenario
have different known priors P(C') and P(z|C) which can then be
taken care of very simply by multiplications.

Having established the functional form of a Bayes posterior dis-
tribution, we now look at a suitable error function that will be
minimized. Following standard arguments [1], for binary classifi-
cations we minimize over all samples ¢ the Cross Entropy [5]

E=-) {alog(y) + (1 —c)log(l—y)}. (3
i
We find a J that minimizes (3) if we apply a stochastic sequence
of additive modifications §J. To this end, we choose a constant
7 and, at each step, we choose randomly an input ¢ and update J
along the negative gradient of E with respect to J,
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This defines our learning rule for a Neural Network with one layer
and sigmoid output function (1). Note that the term in parentheses

lies in the range (—1,1). In the case of complete misclassification
it approaches the values £+1 which makes (4) exactly equivalent
to conventional Perceptron learning [8]. Note that equating (4) to
0 is a fixed-point equation for J which however cannot be solved
analytically, which justifies the Neural Network approach.

3 Fine-tuning the result

Having trained the network in this Bayes-optimal sense (with 5
decreasing over time) still leaves us with the problems of outliers
or misclassified data in our samples. Our assumptions for validity
of the functional form (1) may also lead to non-optimality of the
result obtained so far.

How can these problems be tackled? Although the cross entropy
error has the pleasing property of estimating small probabilities
much better than a LMS error function, which is favorable in the
case of outliers, other choices of error functions such as regular-
ized or marginalized ones [1] can be considered. This is outside
the scope of this paper.

Instead, we fine-tuned our result for J at the decision boundary.
To this end, an algorithm developed by one of the authors [12] was
used to include further data into the set of correctly classified pat-
terns. The Gardner—Derrida error function in [12], measuring the
number of correctly classified data, is maximized. By doing so,
outliers or orignally misclassified data are ignored for the calcula-
tion of J. This results in a shift of the decision boundary, together
with a higher number of correctly classified data, and improved
classification ability in the test sets (Section 5.2).

4 Experimental setup

The employed database contains single word utterances by 50 in-
dividuals (25 male, 25 female) who each spoke four to six ut-
terances of 10 given words plus a number of additional out-of-
vocabulary (OOV) utterances. The development data model 500
words with hidden Markov models each trained with only two ad-
ditional utterances. The number of states of a word model equals
about 0.8 times the number of observed frames and each state
contains only one density. The acoustic preprocessing employs a
frame-shift of 20ms and computes 20 cepstral features, including
derivatives, for every feature vector. The evaluation data contains
a total of 3345 utterances, 2861 utterances to test the word mod-
els and 484 OOV utterances evenly distributed over all speakers.
The classification error rate (CER), which is the number of cor-
rectly tagged words divided by the total number of words, is used
to compare results.

For each utterance of the development and evaluation data, we
compute a vector with confidence measures. Because the con-
fidence measures obtained from the development data partially
exhibit a behavior completely different from the measures com-
puted on the evaluation data, we split the set of 3345 vectors of
confidence measures randomly in two parts. One part contains
1672 vectors and is used to train the confidence classifier. The
other part of 1673 vectors is used for testing and for all test re-
sults given in this paper.

In our experiments, we employ five basic confidence measures.



Each confidence measure is computed at the end of a word hy-
pothesis with loglikelihood [, at time ¢.nq While the word started
at tstart. The ‘two-best’ measure contains the loglikelihood dif-
ference between the best and second best hypothesis at time ‘t’
while the ‘n-avg-best’ measure contains the difference between
the best and the average loglikelihood of the N-best hypotheses.
The measure ‘n-best-states’ is computed as the difference of the
loglikelihood of the word hypothesis and the sum of the best state
hypotheses over the interval [ts¢art, fena]. The ‘avg-acoustics’ di-
vides Ly /(tend — tstart +1). The ‘speaking-rate’ divides the num-
ber of speech frames of the word hypothesis by the number of
states in the word model.

Besides a speaker-independent setup, we can use a speaker-
dependent or even word-dependent setup. Instead of the deci-
sion problem f(X) < 7 with a fixed threshold 7 for all speakers
¢ and words w;, we employ one threshold for all data but first
subtract a speaker or word-specific offset O; or Oi,wj , respec-
tively. The decision problem is then (f(X) — O;) < 7 and
(f(X) = Oi,w;) < 7, respectively. This approach is investigated
in Section 5.3.

Proper classification of the vector of confidence measures X, =
(z1,...,o5) probably cannot be done linearly. Therefore,
we optionally append to X, the 15 2nd-order components
(3, z122, 2123, . . ., 22). This leads to a 20 dimensional vector
X, which can be treated with standard scalar multiplications.

5 Experiments

In the initial, speaker-dependent recognition system without any
confidence measures, the classification error rate equals the word
error rate of 16.7%. We compute an optimal threshold on the
training set and apply that threshold to the test set.

5.1 Speaker-independent confidence mea-
sures

We investigate the tagging accuracy of the five individual confi-
dence measures in a speaker-independent setting. For historical
reasons, the classification error rate of 10.2% for the ‘two-best’
confidence measure serves as a baseline classification error rate
for the other experiments. This means that the single confidence
measure ‘n-avg-best’ already yields a small improvement of 3.9%
(rel.) against the baseline. However, the other confidence mea-
sures yield a higher classification error rate .

Table 1: The classification error rate [%] for individual confi-
dence measures.

Confidence measure | Error rate
two-best 10.2
n-avg-best 9.8
n-best-state 12.2
avg-acoustic 12.4
speaking-rate 15.1

5.2 Confidence measure combination

In a follow-up experiment, we try to combine the confidence mea-
sures such that the resulting classification error rate is lower than

that of the individual confidence measures. The improvement is
measured compared to the CER=10.2% of the single ‘two-best’
measure. To this end, we employ linear discriminant analysis
(LDA). The LDA transform matrix is a linear transformation, esti-
mated on the 1672 training vectors, and applied in this experiment
to the test data either for full transformation or for projection to
the eigenvector with highest eigenvalue (marked “1st ev.” in ta-
bles). We estimate two LDA matrices with dimension 5x5 and
20x20 for the original vectors of confidence measures X, and
the extended vectors X,,,. Additionally, we classify both X, and
X, with the one-layer perceptron J as explained in Section 2.

Table 2: The classification error rate [%] for combined confi-
dence measures.

Combination Error rate
LDA (d=5), st ev. 104 | (+2.0%)
LDA (d=20), 1st ev. 9.0 | (-11.8%)
Bayes (d=6), J 84 | (-17.6%)
Bayes (d=21), J 8.5 | (-16.7%)

Although the LDA and the perceptron both employ a vector multi-
plication to classify the input, the LDA improves the classification
error rate by 11.8% (rel.) to 9.0% while the perceptron improves
the classification error rate by 17.6% (rel.) to 8.4%.

5.3 Data-dependent confidence measures
and combination

First, we investigate the effect of personalizing the ‘avg-acoustic’
and ‘speaking-rate’ measures. For the ‘avg-acoustic’ measure,
we subtracted speaker-specific and word-specific offsets Of* and
Of,‘fvj , respectively, as explained in Section 4. While OF“ con-
tains the average value of ‘avg-acoustic’ on all training utterances
of speaker ¢, Of,‘fvj contains the average value of ‘avg-acoustic’
for only the two training utterances of word j of speaker ¢. In
the case of the speaking rate, we determine the offsets O;” and
Off;}j similar to the ‘avg-acoustic’ measure. We compared min-
imum, maximum and mean functions to obtain word-dependent
and speaker-dependent offsets and found the best performance
for taking the mean ‘avg-acoustics’ and the maximum ‘speaking
rate’. The results are presented in Table 3 while combinations of
confidence measures are presented in Table 4.

Table 3: The classification error rate [%] for single, individual
confidence measures which are speaker and word dependent, re-
spectively.

Confidence Error rate

Speaker Speaker Word
measure .

indep. dependent dependent
avg-acoustic 124 11.1 (-10.5%) | 10.0(-19.4%)
speaking-rate | 15.1 15.1 (-0.0%) | 14.2 (- 6.0%)

Second, we replace two confidence measures in the speaker-
independent measure vector X, = (z1,...,%s) to obtain a
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new feature vector X, where the z, = x4 — Of,‘fvj and x5 =
xzs — 07" are word-specific as explained above. The same pro-

L]

cedure is applied to X, to obtain X;O. Acting on these vectors
which contain our raw confidence measures, we now use projec-
tion on the LDA’s first eigenvector, the neural network trained
with Bayes only, and trained with Bayes and Gardner-Derrida
(GD) error functions, to find the best technique for confidence
measure combination. The classification results with the word-
specific feature vector X; and Xlzo are given in Table 4.

Table 4: The classification error rate [%] for combined confi-
dence measures including word-specific confidence measures.

Combination Error rate
‘linear’d=5 | ‘nonlinear’d=20
LDA (d), 1st ev. 8.2 7.5
Bayes (d+1), J 7.0 7.3
(Bayes + GD) (d+1), J 6.7 6.6

As stated in Section 3, the fine-tuning shifts the decision
boundary.  In this case, this shift can be measured as
the normalized overlap. Using X,, we obtain (J Bayes
lBayes—i—GD)/(llBayes||lBayes+GD|) = 0.988. The result with

Klzo is 0.856. We can compare this to the error rate results given
in Table 4: the greater improvement in error rate in the ‘nonlin-
ear’ case corresponds to a greater shift in the decision boundary.
This lies in the nature of the Gardner—Derrida error function that
we optimized (Section 3): its ability to enlarge the number of cor-
rectly classified patterns increases with the number of dimensions
of the problem [12].

5.4 Nonlinear combination

So far, we solved the problem f(X) < 7 with linear classifiers
based on linear discriminant analysis and a one-layer perceptron.
Due to the distribution of the confidence measures, a non-linear
classifier such as a backpropagation neural network might be able
to achieve a better classification. We used a 3-layer network with
layout 6-30-1 with LDA preprocessing. This is possible since
we use a full rank LDA transformation which only linearly trans-
forms the input data and therefore does not have any effect on
subsequent manipulations other than the desired one of speedup.
In particular, this can be seen from the 6-dimensional test set er-
ror rate which is identically 6.7% for (Bayes + GD) (Table 4) and
LDA + (Bayes + GD) (Table 5). Table 5 shows that the achieved
classification error rate of the Backpropagation network on the
training set is excellent but the classification error rate on the test
set is worse than the linear Bayes classifier.

6 Conclusion

Overall, the single confidence measures as well as the combined
measures improve the classification error rate. Compared to a
recognition system without confidence measures, we have im-
proved the classification error rate from 16.7% to 6.6% (-60%
relative). Compared to the baseline system with the single ‘two-
best’ confidence measure, we have improved the classification er-
ror rate from 10.2% to 6.6% (-35% relative). The application of
linear discriminant analysis, a Bayes one-layer perceptron, Bayes

Table 5: The classification error rate [%] for K; with multilayer
architecture. Backpropagation = BP.

o Error rate
Combination _
Training set | Test set
LDA + (Bayes + GD) 6.6 6.7
LDA + BP 10,000 steps 52 7.5
LDA + BP 100,000 steps 0.9 10.2
LDA + BP 1,000,000 steps 0.8 12.1

plus data-dependent measures, and Bayes plus Gardner—Derrida
plus data-dependent confidence measures continuously improves
the classification error rate. Additionally, we found that the results
of our one-layer Bayesian perceptron generalize better compared
to a non-linear backpropagation network.
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